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Abstract— Soft robots have recently evoked extensive atten-
tion due to their abilities to work effectively in unstructured en-
vironments. As an actuation technology of soft robots, dielectric
elastomer actuators (DEAs) exhibit many intriguing attributes
such as large strain and high energy density. However, due
to nonlinear electromechanical coupling, it is challenging to
accurately model a DEA, and further it is difficult to control
a DEA-based soft robot. This work presents a novel DEA-
based soft circular crawling robot. The kinematics of the soft
robot is explored and a knowledge-based model is developed
to facilitate the controller design. An iterative learning control
(ILC) method then is applied to control the soft robot. By
employing ILC, the performance of the robot motion trajectory
tracking can be improved significantly without using a perfect
model. Finally, several numerical studies are conducted to
illustrate the effectiveness of the ILC.

I. INTRODUCTION

Benefit from the feature of flexible materials, soft robots
undoubtedly have higher motion complexity than conven-
tional rigid robots. Soft robots can stretch, bend and twist
in a completely new way, therefore they possess great envi-
ronmental adaptability, motion sensitivity and morphological
diversity. In view of these, soft robots have high research
value and application prospects.

This paper presents a novel soft circular crawling robot
capable of omni-directional motion and explores the motion
control issue of such robot. The body of the soft robot
belongs to a class of dielectric elastomer actuators (DEAs)
which have many similar properties of biological muscles
such as fast response, large strain and high energy density.
Moreover, four electro-adhesion actuators are adopted as the
robot feet to provide adaptive and low-power consumption
adhesion action. The use of the DEA and the electro-
adhesion actuators render the robot to be light weight and fast
in response. Furthermore, inspired by the natural inchworm,
the robot can obtain stable locomotion through alternate
expansion/contraction of the body and adhesion/detachment
of the feet.

As one of the key steps in designing a controllable DEA
based soft robot, it is necessary to find out how to control
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the DEA accurately. In [1], a feed-forward control approach
is proposed for a planar DEA. However, due to the lack
of feedback information, this control scheme cannot adjust
the control output to pursue a better performance, which
limits its application. To enhance the robustness of the
control system, feedback control schemes are considered
in several studies, the notable examples include the classic
proportional-integral-derivative (PID) control scheme pre-
sented in [2] and the cerebellum-inspired adaptive controller
proposed in [3]. It should be pointed out that these previous
studies on the control of DEAs are mostly restricted at
isolated actuators with simple geometries. So far, although
various soft robots driven by DEAs have been developed
[4]–[6], few studies have focused on the motion control of
the DEA based soft robots, which greatly hindered these soft
robots from practical applications.

Based on the proposed soft robot, this work aims to
address the motion control problem of the robot via iterative
learning control (ILC), which is essential for both motion
control and motion planning [7]. The motivation of adopting
ILC for the soft robot control comes from three aspects.
Firstly, a regular desired sequence motion trajectory is critical
to drive the robot in a cluttered environment [8]. Given by
this, it needs to study the working principle of DEA at first,
which can be found that each of the action cycle is only
open-loop and uncontrollable. In this way, the specific action
of a single cycle of DEA can be only adjusted by the input
signals. Therefore, in order to improve the robot trajectory
tracking performance, the input and output information of the
DEA control system in the past cycles are generally used to
formulate the input signal for the next iteration and ILC is
usually designed to handle such repetitive tasks. Secondly,
as pointed out in [9], [10], one of the main challenges of
the DEA based soft robot control is that it is difficult to
obtain an accurate model. As far as we know, ILC is a partial
model-free control method. In other words, a great control
performance can still be achieved even without the specific
system parameters. Thirdly, it has been proved that the design
and implementation of ILC is not so difficult which has a
general promotion significance, and the application process
will not be very high complexity. At present, such controllers
have been widely applied in many fields of practice, such as
the motion control with mobile robots, manipulators, electric
motors and fish robots, etc. This paper will demonstrate the
effectiveness of ILC in the motion control of soft robots and
establish the foundation for future work.

The rest of this paper is organized as follows. Section
II details the robot prototype. The dynamical model of the



soft robot is built in Section III. Section IV explores the
ILC design with its convergence analysis. Furthermore, the
effectiveness of the proposed ILC scheme is verified by
simulations in Section V. Finally, in Section VI, a brief
conclusion is given.

II. A SOFT CIRCULAR CRAWLING ROBOT

A. Robot Prototype

The prototype of the soft crawling robot to be discussed
in this paper is exhibited in Fig. 1. The robot is mainly
composed of two modules: a circular DEA as the robot
body and four electro-adhesion actuators (EAs) as the robot
feet. During the actuation, the DEA is used to generate
the whole deformation reversibly, while the EAs help the
robot grasp the surface. In addition, in order to reduce the
frictional resistance generated during the movement, four sets
of passive omni-directional auxiliary wheels are installed.
Moreover, an embedded micro-controller (Arduino UNO)
is used to receive external sensor signals and calculate the
specific execution steps by the internal program for the actual
robot control.

Figure 2 illustrates the configuration of the DEA, which
is actually a capacitor consisting of a VHB membrane
sandwiched by two sheets of compliant electrodes. Upon
application of high voltage, because of the incompressibility
of the VHB 4910 material, the membrane will undergo
an isovolumetric deformation under the action of voltage-
induced Maxwell stress [11] which is mainly represented by
thickness reduction and area expansion in this study. In the
actual fabrication process, the membrane with a thickness of
1 mm and the radius of 25 mm is selected. Next, the mem-
brane is subjected to a physical equal-biaxial pre-stretching
to evenly expand its area by 16 times, meanwhile two Acrylic
frames are used for constraining or fixing to maintain the
pre-stretched state. Thus, the radius of the membrane as the
pre-stretched state will reach 100 mm. Finally, compliant
electrodes are scribbled on the both surfaces of the membrane
for the conductivity of the electricity.

Fig. 1. Soft mobile robot prototype.

Fig. 2. Fabrication process of the robot body.

Thus, the membrane remains pre-stretched under mechan-
ical constraints. When the voltage is applied, the membrane
expands omni-directionally, and restore to the initial state
with the voltage off, consequently bringing about reversible
deformation process.

With the deformation ability caused by the DEA, some
additional components are needed to convert the deforma-
tions into displacements. In this study, four electro-adhesion
actuators illustrated in Fig. 3 are added into the robot design
as the robot feet, which allow the robot move on the substrate
freely.

The fabrication of this kind of actuators is given as fol-
lows. At first, the designed electrode pattern with the precise
dimension shown in Fig. 3(b) should be drawn on a plain A4
paper. Thereafter, two regions enclosed by the lines would be
coated with graphite using a 2B pencil to form the conductive
regions. Finally, each of the separate modules was bonded
together with pieces of VHB 4910 membrane (including
conductive layers, Acrylic board and foot connectors). It
should be noted here that the bonding material used for
adhesion (such as VHB 4910 adopted herein) is required to
ensure insulation to prevent the electrodes from being short-
circuited via external substances.

As shown in Fig.4, when a high voltage is applied to the
conductive regions of the electro-adhesion actuator, the posi-
tive and negative charges would be continuously accumulated
on the conductive layer and cannot be neutralized because
a complete loop is not formed. Under the effect of the
accumulated charge, a high electric field is shaped between
the conductive layer and the ground, thereby forming an
opposite induced charges on the substrate. Thus, under the
principle of electrostatic attraction, an electro-adhesive force
would be generated so that the actuator can be fixed on the
substrate [12]. Additionally, in order to avoid the charge
neutralization, an insulating layer (e.g., paper) is needed
between the conductive layer and the substrate. Furthermore,
in the absence of voltage, the charges accumulated on the
conductive layer will disappear, so as the induced charges
and the electro-adhesion force, resulting in reversible adhe-
sion.

Foot connector

Acrylic board

VHB tape

Graphite
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Foot

Positive electrode

Negative electrode

Scale :  mm

Graphite Pattern

Fig. 3. Schematic of the robot foot. (a) exploded view, (b) dimensions of
the electrode pattern.



B. Locomotion Mechanism

Due to the contribution of the four feet, the robot is able
to realize 2D planar motion, which is represented by the
linear motion in the two perpendicular directions. Because
of the consistent movement mechanism in both directions,
here we only take a single direction motion as an example
exhibited in Fig. 5 (the other directional EAs do not effect
the robot, so they are ignored in the following description,
and the whole process is in a non-power supply state; while
the EA in the positive of this direction is defined as the
forefoot, the negative is treated as the rear foot): as the first
step of the loop, the voltage applied to forefoot is removed,
only the rear foot is powered for its adhesion, and the body
is supplied with power as well to cause the body expanding,
thereby pushing the forefoot forward; thereafter the body
expands to a certain extent, the forefoot is reattached to fix
on the substrate, while the voltage of the body and the rear
foot is removed which means they would return to the initial
state, thus the rear foot will be pulled towards the DEA’s
center due to the shrink of the body. Consequently, the robot
achieves a cycle-by-cycle forward locomotion. Furthermore,
by reversing the actuation sequence of the EAs, the robot is
able to move forward and backward, respectively.

By this way, the robot is able to realize 2D omni-
directional motion (forward, backward, left and right). Si-
multaneously, this type of movement exhibits a high degree
of stability, which is particularly suitable for unstructured
environments.

III. MODELING

Dynamic modeling of the robot body is essential for the
controller design. The previous studies of modeling a DEA
are generally based on the theory of DE [13]–[15]. However,
the results of these studies are generally described by several
sets of partial differential equations, and the expression of
those equations greatly reduce their practicality in model-
based controller design, which can not meet complex control
objectives. In this section, a knowledge-based data-driven
method is employed to model the DEA of the soft robot.

Due to the similarity between biological muscles and DE
materials in terms of viscoelasticity, a simplified spring-
dashpot model is employed to describe the physical analog
[16]. According to the locomotion of the soft robot, the robot
body is treated as a single elastic element along the motion
direction while the overall body shape change is ignored.
As shown in Fig.6, the voltage induced force Factive can be

Fig. 4. Working principle of the EA.

Fig. 5. Robot locomotion.

Fig. 6. Dynamic model of the DEA

considered as the product of an equivalent Maxwell stress
with an equivalent cross-sectional area of the body, which
is related to the length change. Since Maxwell stress is
proportional to the electric field, Factive can be written as

Factive =V 2(αx+β ), (1)

where V is the voltage applied in kV and x represents the
length change related to deformation. According to [9], αx+
β describes the mapping between the voltage induced force
with different length changes and different voltages. α and
β can be determined using the least square fitting method.

As pointed in [15], the static stretch force is described by a
linear spring with stiffness k. The spring-dashpot parameters
include the spring deformation xh, the spring stiffness kh and
the viscous friction coefficient ch (h = 1,2, ...,N). The model
uncertainties mainly come from the equivalent mass m̃ of the
system and the resistance force ζ during the motion. The
dynamic equations are given as

m̃ẍ =−kx−
N

∑
h=1

khxh +Factive−ζ sign(ẋ), (2)

khxh = ch(ẋ− ẋh),h = 1,2, · · · ,N. (3)

In this work, the number of spring-dashpot pairs is selected
as N = 3, which can finally well predict the dynamics of
the DEA. The model developed in this work is completely
a simplified version compared to its actual model, but will
be more suitable for the complex geometries DEAs that are
difficult to describe analytically. Thus, converting the above
differential equations into the state-space model, we can have

Ẋ = AX +Bu, (4)

y =CX . (5)
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Fig. 7. Experimental results of model identification and validation. (a)
identification result applying a sweep voltage signal, (b) and (c) validation
results applying sine voltage signals and triangle voltage signals, respec-
tively.

where

u =
Factive + f̃

m̃
,Factive ≥ 0, (6)

f̃ =−ζ sign(ẋ), (7)

X =
[
x1 x2 x3 x ẋ

]T
, (8)

A =


−k1/c1 0 0 0 1

0 −k2/c2 0 0 1
0 0 −k3/c3 0 1
0 0 0 0 1

−k1/m̃ −k2/m̃ −k3/m̃ −k/m̃ 0

 , (9)

B =
[
0 0 0 0 1

]T
, (10)

C =
[
0 0 0 1 0

]
. (11)

The spring-dashpot coefficients kh and ch are determined
from the dynamic responses of the actuator by experimen-
tally identification. First of all, the DEA is driven by a sinu-
soidal voltage signal with the frequency of 1 Hz, amplitude
of 0.36 kV and offset of 3 kV, and then the MATLAB System
Identification Toolbox is used to estimate these parameters
according to the above equations and the experimental data.
As shown in Fig. 7, besides the identification, several basic
signals (sine wave and triangle wave) of different frequencies
are also employed to verify the identified model. Finally, we
get the proper parameters shown in Table I. In addition, the
equivalent mass m̃ is 0.12 kg and the resistance force ζ is
measured to be 0.1m̃g, where g presents the gravity acceler-
ation. As a result, this model matches the experimental data
and well predicts the creep under different voltage signals.

IV. CONTROLLER DESIGN

In this work, the control objective is to drive the robot to
follow a predefined target trajectory, which will be realized
by using ILC. First of all, the system dynamics of the robot
in iteration domain is

Xk = AXk +Buk, (12a)
yk =CXk, (12b)

TABLE I
THE IDENTIFIED MODEL PARAMETERS

m̃ (kg) 0.12 k1 (N · cm−1) 34.64
ζ (N) 0.1m̃g k2 (N · cm−1) 15.2

k (N · cm−1) 3.456 k3 (N · cm−1) 0.0396
α (N · cm−1 · kV−2) 3.6 c1 (N · cm · s−1) 0.4

β (N · kV−2) -0.25 c2 ( N · cm · s−1) 5.067
c3 (N · cm · s−1) 12

where k is the iteration index and

uk ,
V 2

k (αxk +β )−ζ sign(ẋk)

m̃
(13)

is a virtual control input to the system (the actual control
input to the robot is the voltage Vk).

To facilitate the convergence analysis, it is assumed that
the target trajectory yd is generated by the following dynam-
ical system

Xd = AXd +Bud , (14a)
yd =CXd . (14b)

This is a common assumption in the ILC field. The control
objective is to find a sequence of uk such that the system
output yk can track the desired target yd as closely as
possible.

It is clear from the modeling section that CB = 0, i.e.,
the relative degree of the system is higher than 1, which
motivates us to design a higher-order ILC scheme. By paying
attention to the property CAB = 1, a D2 type of ILC law is
proposed

Vk =

√
ukm̃+ζ sign(ẋk)

αxk +β
, (15a)

uk+1 = uk + γ ëk. (15b)

where γ means the learning gain that determines the overall
speed of the iterative process.

The convergence analysis of the proposed controller is
given below.

Denote ek , yd − yk, ∆Xk , Xd −Xk, ∆uk , ud − uk. By
considering the ILC law (15b) and the definition of ∆uk, it
gives

∆uk+1 = ud−uk+1

= ud− (uk + γ ëk)

= ∆uk− γ ëk. (16)

Since ∆Ẋk = A∆Xk +B∆uk and CB = 0, we can obtain

ėk = ẏd− ẏk

=C∆Ẋk

=C (A∆Xk +B∆uk)

=CA∆Xk (17)



which therefore implies that

ëk =CA∆Ẋk

=CA2
∆Xk +CAB∆uk. (18)

By substituting (18) into (16), since CAB = 1, it has

∆uk+1 = (1− γCAB)∆uk− γCA2
∆Xk

= (1− γ)∆uk− γCA2
∆Xk. (19)

As the solution of (12a) is

Xk(t) = eAtXk(0)+
∫ t

0
eA(t−τ)Buk(τ)dτ, (20)

then we have

∆Xk(t) =
∫ t

0
eA(t−τ)B∆uk(τ)dτ, (21)

provided that Xd(0) = Xk(0).
By taking norm on both sides of (21), it yields

‖∆Xk(t)‖=
∫ t

0
ea(t−τ)b‖∆uk(τ)‖dτ, (22)

where a ≥ ‖A‖ and b ≥ ‖B‖. Define ‖g(t)‖λ ,
supt∈[0,T ] e

−λ t‖g(t)‖, then (22) gives

‖∆Xk(t)‖ ≤ beat
∫ t

0
e(λ−a)τ dτ‖∆uk(t)‖λ

= b
eλ t − eat

λ −a
‖∆uk(t)‖λ . (23)

Hence we have

‖∆Xk(t)‖λ = sup
t∈[0,T ]

e−λ t‖∆Xk(t)‖

≤ b sup
t∈[0,T ]

1− e−(λ−a)t

λ −a
‖∆uk(t)‖λ

≤ b
1− e−(λ−a)T

λ −a
‖∆uk(t)‖λ

, O(λ−1)‖∆uk(t)‖λ (24)

for a sufficiently large λ > a.
By taking the λ -norm on both sides of (19) and applying

(24), it has

‖∆uk+1‖λ = (|1− γ|+ γ‖CA2‖O(λ−1))‖∆uk‖λ . (25)

If γ is designed properly such that |1− γ| < 1 (i.e., 0 <
γ < 2), there exists δ > 0 such that |1− γ|+δ < 1.

By selecting a sufficiently large λ , the following inequality
can be satisfied

γ‖CA2‖O(λ−1)< δ .

Therefore, the convergence of ‖∆uk‖λ , i.e., ∆uk, has
been proven. According to the convergence of ∆uk and the
inequality (24), it is obvious that

lim
k→∞

∆Xk = 0. (26)

Furthermore, because ek(t) =C∆Xk(t), the convergence of
ek(t), t ∈ [0,T ], can be obtained immediately.
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Fig. 8. The simulation results of motion trajectory profiles with Arch-type
signal under different iterations. ITN indicates the current iteration number.

V. SIMULATION

In order to verify the effectiveness of the proposed ILC
scheme, some simulations are conducted in this section.

The model parameters used in the simulation are detailed
in Table I. In order to verify the effectiveness of the motion
trajectory tracking performance with the ILC controller, it is
necessary to develop a desired trajectory for testing. In this
section, two representative and realistic trajectories are used.

Firstly, because the target in the tracking is the motion
trajectory, there is bound to be a common process of shuttle
in the actual application. Therefore, by simplifying this
process, an arch-type trajectory is constituted as shown in
(27).

yd,Arch (t) =



t2

100
(0≤ t ≤ 4)

− (t−20)2

400
+0.8 (4 < t ≤ 36)

(t−40)2

100
(36 < t ≤ 40)

0 (t > 40)

, (27)

According to the design process of ILC controller in
Section IV, only the learning gain γ and the initial input
signal u0 need to be adjusted for a better performance. In
this simulation, set u0 = 0 and γ = 0.05 based on multiple
considerations. As can be seen from Fig. 8, the simulated
trajectory can perfectly track the desired trajectory. In other
words, the soft robot can be actuated according to a certain
desired trajectory under the control of ILC, which will
greatly improve its manipulability. For more details, the
deviation between the motion trajectory and the desired
trajectory is relatively large in the case of the early iterations,
but would gradually decrease as the number of iterations
increases and eventually approach near zero after 30 times
of iteration. This result also proves the effectiveness of the
ILC controller, indicating that the control effect would be
significantly improved as the iteration increases.
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Fig. 9. The simulation results of motion trajectory profiles with Ladder-
type signal under different iterations. ITN indicates the current iteration
number.

yd,Ladder (t) =



t2

20
(0≤ t ≤ 1)

− (t−6)2

100
+0.3 (1 < t ≤ 6)

0.3 (6 < t ≤ 10)

(t−10)2

20
+0.3 (10≤ t ≤ 11)

− (t−16)2

100
+0.6 (11 < t ≤ 16)

0.6 (16 < t ≤ 20)

(t−20)2

20
+0.6 (20≤ t ≤ 21)

− (t−26)2

100
+0.9 (21 < t ≤ 26)

0.9 (t > 26)

, (28)

Secondly, inspired by the idea of phased movement pro-
cess, another trajectory is designed. In general, for the
purpose of stability, intermittent motion restrictions would
be imposed during the design. For example, when a robot
is required to move from point A to point B, there will
generally be an intermediate transition point for a short stay
to prevent the deviation between two adjacent displacement
from being too large, otherwise it is prone to breakdown.
Therefore, based on this consideration, a ladder-type trajec-
tory is formed as (28).

Similarly, set the initial signal u0 = 0 and the learning
gain γ = 0.05 to keep the simulation conditions consistent.
As shown in Fig. 9, the final results are also similar to the
previous one. In other words, the tracking performance is
also great for this trajectory by applying the ILC scheme.

According to the simulation results shown above, it can
be concluded that the proposed ILC scheme is able to solve
the trajectory tracking problem of the developed soft robot
effectively.

VI. CONCLUSION

This paper demonstrates the motion trajectory tracking
control of a novel DEA-based soft circular crawling robot.
By virtue of the knowledge on the DEA, a simplified
dynamic model is obtained by data-driven method. Although

the model is a simplified version compared to its actual
model, the viscoelasticity, inertia and friction is also con-
sidered and the model has the ability to predict the dy-
namic response of the DEA well. Therefore, this knowledge-
based data-driven model is suitable for the motion controller
design. Based on the dynamic model, an ILC scheme is
designed and its convergence is analyzed in detail. Finally,
several simulations are conducted to verify the effectiveness
of the designed controller. The results show that the ILC
scheme can significantly improve the motion trajectory track-
ing performance of the DEA-based soft robot. Motivated by
its effectiveness verified in the simulation, we will study the
applicability of the proposed ILC in application of the soft
robot in the next research phase.
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