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Abstract— In this paper we present a framework to learn
skills from human demonstrations in the form of geometric
nullspaces, which can be executed using a robot. We collect
data of human demonstrations, fit geometric nullspaces to them,
and also infer their corresponding geometric constraint models.
These geometric constraints provide a powerful mathematical
model as well as an intuitive representation of the skill in terms
of the involved objects. To execute the skill using a robot,
we combine this geometric skill description with the robot’s
kinematics and other environmental constraints, from which
poses can be sampled for the robot’s execution. The result of our
framework is a system that takes the human demonstrations as
input, learns the underlying skill model, and executes the learnt
skill with different robots in different dynamic environments.
We evaluate our approach on a simulated industrial robot, and
execute the final task on the iCub humanoid robot.

I. INTRODUCTION

Imitating actions from demonstrations is an intuitive way
to learn new tasks for both humans and robots. Learning
from Demonstration (LfD) [1, 2] has been commonly used
for human-robot skill-transfer, where the robot learns from
examples provided by a human teacher. There are broadly
two types of demonstrations: human performing the task, or
human moving the robot through a joystick or kinesthetic
methods to perform the task. The first approach has the
advantage of being independent of any specific robot and
may also be more intuitive or convenient for the human. The
second way may be more suitable for tasks requiring higher
precision (e.g. welding), where hardware independence is not
important. In this work, we focus on the first approach and
use a motion tracking system to track the positions of the
human pose and objects in the scene. The learnt tasks are
then executed on different types of robots.

Traditional LfD approaches either learn the exact trajecto-
ries or the low-level skill model by generalizing the demon-
strated trajectories [3]. The modelling approach chosen to
represent the skills greatly affects the variety of possible
skills and their adaptability to different hardware and envi-
ronments. Constraint-based skill models offer a powerful and
flexible choice, allowing us to model geometric constraints
on the configuration and operational spaces [4, 5, 6, 7],
allowable velocities [8], and also forces and torques [9, 10,
11, 12, 13]. Also, constraint-based approaches have proven to
be amenable to semantic modelling using ontologies [14] and
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can be used for intuitive programming interfaces for robotic
tasks [15]. In this work, we propose to use a constraint-
based skill model with a LfD setup, where constraint-based
descriptions and parameterized skill sequences are generated
automatically from observing human demonstrations.

For example, when grasping a bottle, the hand pose is
constrained to be at a certain distance and orientation with
respect to the bottle. These constraints define a space of
valid poses for the robot to perform the task, which we refer
to as the nullspace. To execute a task using a robot, we
must additionally consider environment constraints and robot
kinematics. For our example, the geometric nullspace of the
task itself is a cylinder with a radius and height depending
on the dimensions of the grasped object. To generate the
grasp poses for a specific robot, we additionally consider the
reachability of the robot’s end-effector and possible obstacles
in the robot’s path. The constraint-based description can be
used to control the robot when executing a task and its
parameters (e.g. height, radius of the bottle) can be edited to
generalize to tasks with similar objects.

Learning task constraints is an active research area and has
been addressed previously in relation with human demonstra-
tions [16, 17, 18]. Pérez-D’Arpino et al. [5] learn reaching
and grasping tasks from demonstrations and describe them
as a sequence of keyframes each associated with a set of
geometric constraints. Silverio et al. [19] use TP-GMM to
simultaneously learn the operational and configuration space
constraints (as well as priority hierarchies) from demonstra-
tions. Rodriguez et al. [20] learn the relational positioning
between two elements in space (point, line, plane) such as
point-point distances, coincidences or parallelism. Subramani
et al. [12] define six geometric constraints and infer them
using both kinematic and force/torque information.

However, current approaches to learn the nullspace and
their geometric constraints are limited. Most approaches use
constraints that are handcrafted by an expert. In our work,
we propose an approach to learn geometric constraints and
their nullspace only from kinematic information via human
demonstrations. This allows the robot to infer constraints
for skills that have not been handcrafted by experts but are
demonstrated by novice users. In our experimental setup, we
consider six basic skills that are demonstrated by the human.
We use the data collected from these experiments to infer the
geometric nullspace of the skill as well as their constraint-
based description. These constraint-based descriptions can
be adapted for different objects or environments by editing
their parameters. To perform the skills on a robot, we
combine the geometric constraints with constraints from the
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Fig. 1. Overview of the proposed LfD framework: the demonstrated data
of the skill is fit to the skill nullspace to infer geometric constraints, which
is combined with robot/environment constraints for robot skill execution.

robot kinematic model and the environment and generate the
required robot motions. Finally, we execute the learnt skills
on an iCub robot and show how the constraint nullspace
can be used in a human-robot shared-control [21] setting to
maintain learnt constraints.

The key contribution of this paper is a novel LfD approach
that infers a parameterized constraint-based skill model that
is independent of the robot kinematics or environment.
Through our experiments, we demonstrate how this approach
can be used to easily learn new skills, adapt them to different
objects/environments, execute them using different types of
robots, and utilize the skill nullspace for human-robot shared
control with physical interaction.

Section II gives an overview of our framework and the
basic skills. In Section III we first describe the geometric
constraint formulation and nullspace manifolds. Then we
present the mathematical model for fitting the collected data
to a nullspace manifold, and for mapping the nullspace to
the geometric constraints. Section IV evaluates the proposed
learning framework with a simulated industrial manipulator
and on the iCub humanoid robot. The constraints and its
nullspace of all the skills are formulated. We present sev-
eral real experiments (execution of learnt skills and a tea
making task) on the iCub robot. Finally, Section V presents
conclusions and future research directions.

II. LEARNING FROM DEMONSTRATION FRAMEWORK

We propose a LfD framework to infer skills from human
demonstrations that can be used for robot executions of
similar tasks. As LfD is an intuitive technique, it allows
novice users to perform demonstrations of the skills.

A. Framework

Fig. 1 gives an overview of the proposed LfD framework
and algorithm pipeline:

∙ We first define a set of basic skills that we want to learn.
∙ We record samples of each skill from human demon-

strations and collect kinematic information consisting
of positions and orientations.

∙ The set of data points in the skill demonstration repre-
sent samples in the nullspace of geometric constraints.
We fit the data points to a nullspace manifold and
estimate its parameters.

∙ Geometric constraints are inferred from the nullspace as
a generalized representation of the learnt skills.

Grasp Place Move Pull Pour

�1

Fig. 2. The collected demonstration data points for basic skills represent
samples in the nullspace of their respective geometric constraints.

∙ The operator can easily modify the learnt skill by chang-
ing its parameters and adapt it to a different scenario:
e.g. grasping a cup with different radius or height.

∙ The formulated geometric constraints are combined with
robot/environment constraints.

∙ During robot execution, samples in the nullspace are
generated by the constraint solver for executing the skill
with a robot. In a dynamic environment, the poses are
re-sampled in the nullspace to maintain the constraints.

B. Data collection

We define 6 basic skills and collect demonstration data
(i.e., poses of all manipulation objects and 1 point on the
wrist of the human hand) using OptiTrack 3D sensors1.
Some skills are discrete sample points (e.g. grasp) while
others are continuous actions (e.g. pull). Hence, the data is
collected either as individual poses (discrete) or trajectories
(continuous):

∙ Grasp: grasping the bottle (discrete)
∙ Place: placing the bottle on the table (discrete)
∙ Move: moving the bottle/tray in 3D space (discrete)
∙ Pull: pulling a cup on the table closer (continuous)
∙ Pour: pouring the bottle into a cup (continuous)
∙ Mix: mixing a cup with a spoon (continuous)

The user performs multiple demonstrations of each skill
individually (Fig. 2).

III. CONSTRAINT-BASED SKILL MODEL

Robot skills are implementations of behaviours or capa-
bilities of the robot. In essence, they control motion of the
robot in operational/configuration space in a way that this
capability or behaviour is realized. In our formulation, they
are expressed as constraints on the robots motion in the
operational or configuration spaces. In this constraint-based
model, each skill is represented as a set of geometric inter-
relational constraints between geometric entities in the setup,
e.g. workpieces, tools. For example, grasping tasks can be
represented using geometric constraints between the tools
(or hand) and the object to be grasped. Therefore, the skills
learnt through the geometric constraints and their nullspace
are invariant to robots.

In this framework, the skill itself is described using
Geometric Constraints. Additional constraints from the envi-
ronment such as collision avoidance and robot kinematics are
added separately, and defined as Environment Constraints

1https://optitrack.com/



TABLE I
GEOMETRIC CONSTRAINT MODELS

Fixed Constr. Geometric
Constraint

Transformation Manifold
(Translation, Rotation)

Line1 Point2 Distance Cylinder, SO(3)
Line1 Line2 Distance Cylinder, OneParallel

Line1 Line2 Angle ℝ3, OneAngle
Plane1 Point2 Distance Plane, SO(3)
Plane1 Line2 Distance Plane, OneAngle

Plane1 Line2 Angle ℝ3, OneAngle
Plane1 Plane2 Distance Plane, OneParallel

Plane1 Plane2 Angle ℝ3, OneAngle

and Robot Constraints respectively. This separation of differ-
ent constraint types allows hardware and environment agnos-
tic skill descriptions that can be adapted to different robots
and environments. The constraint modelling and solver used
in this paper are based on our previous works [6, 22, 23, 24].

A. Geometric constraints

A geometric constraint is defined as a geometric relation
between two shapes (fixed and constrained) that affects the
relative transformation of the constrained shape w.r.t. the
fixed shape. These can relate to distances, angles, parallelism
or coincidences between points, lines or planes. The set of
relative transformations that satisfy the constraints is the
nullspace of the geometric constraint. Table I shows some
of the geometric constraint models and their corresponding
nullspaces that we used in this work.

Constraint Nullspace: As seen from Table I, the nullspace
of geometric constraints contains two parts describing a
transformation manifold: rotation and translation. Tables II
and III show the parametric models and projection functions
for the translation and rotation manifolds respectively.

B. Fitting Data to a Skill Nullspace Manifold

The experimental data collected from our teaching exper-
iments contains poses of the different entities in the scene,
e.g. bottle, cup, hand. For each entity, we manually define
a set of geometric shapes that approximate its geometry.
This decomposition can also be done automatically using
CAD models [14] or primitive fitting [25]. Each of these
geometries is then tracked as a frame in the data recordings.
The recordings are used to calculate relative transformations
between the different frames. The set of data points ([u,R] ∈
D,D ∈ SE(3)) in the skill demonstration recording represent
samples in the nullspace of geometric constraints. In case
of continuous actions, the temporal spread of these data
points is also important as they represent a trajectory in the
nullspace of geometric constraints. We use these samples
to classify the nullspace type and fit the data points to
estimate its parameters. This is done by formulating this
fitting problem as a non-linear optimization problem (Eq. 1),
where the parameters of the nullspace model � = [�T ,�R]

TABLE II
PARAMETRIC REPRESENTATION AND PROJECTION OPERATIONS FOR

TRANSLATION MANIFOLDS

Manifold Parameters �T Projection of Point ProjT(�, u)

ℝ3 - u
Point [p] p
Line [p, â] p + ((u − p) ⋅ â)â
Circle [p, n̂, r] p + r[ProjTPlane(p,n̂)(u) − p]1

Plane [p, n̂] u + ((p − u) ⋅ n̂)n̂
Cylinder [p, â, r, ℎ] ProjTPlane(p,â)(u) + r[u − ProjTPlane(p,â)(u)]1

1 vectors enclosed in [] are considered normalized

TABLE III
PARAMETRIC REPRESENTATION AND PROJECTION FOR ROTATION

MANIFOLDS

Manifold Parameters �R Projection of Vector ProjR(�, vc ,Ri)

SO(3) - Ri

OneParallel [vf ] RAA(wR, �R) Ri

OneAngle [vf , �] RAA(wR, �R − �) Ri

1 vf = Fixed vector, vc = Constrained vector, w = vf ×vc , � = ∠(vf , vc ),
�R = ∠(vf , vc ), wR = vf × vc , RAA(a, �) = Rotation matrix defined
by axis a and angle �, Ri = Input rotation matrix

are the optimization variables and the optimization function
is the distance of the data points from the fitted nullspace
model (Eq. 2, Eq. 3).

It is possible to have multiple nullspace definitions that fit
the data. To avoid over-generalization, we consider the com-
plexity of different models in the fitting algorithm and chose
the most restrictive model that can fit the data. For example,
a set of points lying on a line will also fit correctly on a
plane. We evaluate the fitting error for simpler models and
progressively move to more complex models until a threshold
value of the fitting error is reached. In our examples, the
order followed was Point, Line, Plane, Cylinder.

�opt = argmin
[�T ,�R]

∑

[u,R]i∈D
(distT(�T , u) + distR(�R, vc ,R))

(1)
distT(�T , u) = ‖ProjT(�T , u) − u‖2 (2)

distR(�R, vc ,R) = ‖quat(ProjR(�R, vc ,R)) − quat(R)‖2
(3)

C. Mapping the Skill Nullspace to Geometric Constraints

Using the non-linear optimization approach, the skill
nullspace can be estimated. From this nullspace definition,
samples can be generated for executing the skill with a
robot. However, this nullspace description does not provide
much semantic information about the skill itself. It can be
difficult for a person to understand the learnt skill from
the nullspace description alone. A skill description in terms
of geometric relations (e.g. coincident, concentric) between
geometric entities present in the scene (e.g. plane of the
table, cylinder of the cup) are much more intuitive for the



operator to understand. The operator can also easily modify
the learnt skill by changing its parameters and adapt it to
a different scenario, e.g. grasping a cup with a different
radius or height. To map the geometric nullspace with the
corresponding constraints, we use the mapping in Table I
along with the list of geometries that form the different
objects (e.g. Planetable, Cylindercup).

D. Executing learnt skills using a robot

Once the constraint-based definitions of the learnt skill are
obtained, they can be solved to generate the required robot
motions for execution.

1) Robot and Environment Constraints: In addition to
direct geometric relations that define the skill, the robot
controller needs to consider the kinematic structure of the
robot (e.g. 6-DoF industrial robot, 53-DoF iCub), incorporate
safety requirements arising from the robot model (e.g. joint
limits) and constraints from the environment (e.g. collision
avoidance). Furthermore, there are additional limitations on
the robot’s speed and acceleration when a human is present
in the robot’s workspace to ensure safe collaboration. All
of these aspects are also modeled as non-linear constraints,
based on our previous work [23].

2) Constraint Solver: We use a hybrid constraint-solving
approach [6], which is a combination of the exact solver
for geometric constraints [24] followed by an iterative
solver [23] that combines the robot and environment con-
straints to generate a non-linear optimization problem. This
optimization problem is solved using the NLOpt library [26]
to generate the Cartesian or joint positions required to
execute the task on a specific robot.

3) Task Priorities: When there are multiple constraints
from different aspects that the robot must consider, the
definition of priorities is important to ensure safe execution
of learnt skills. In our case, we consider multiple priority
levels. The highest priority is assigned to the robot joint
limitations and collision avoidance. The second priority is
assigned to the geometric constraints describing the task.
The lowest priority levels are for maintaining an optimal (or
most reachable) posture and minimizing the distance between
successive joint positions.

IV. EXPERIMENT EVALUATION

In this section, we show how our LfD framework is
used in robotics applications. We demonstrate several typical
robotic skills learnt using our framework and represented as
geometric constraints, e.g. grasp, move and place objects.
The formulated geometric constraints together with robot and
environment constraints can be solved by constraint solvers
to provide the desired poses for the robot execution.

As mentioned earlier, the skills learnt from human demon-
stration are invariant to the robot. Therefore, the proposed
framework is evaluated on different robots. Firstly, we tested
the execution of learnt skills on a 6-DoF industrial robot
in simulation. Furthermore, we also evaluated it on the 53-
DoF iCub humanoid robot, learning six basic skills and a tea
making task in a human-robot interaction scenario.

A. Robot Skills

We present several examples of robot skills with their
constraint-based definition as well as an analysis of the
nullspace of each skill. We test all the skills and illustrate
their spaces on a 6-DoF industrial robot.2
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CylindergAxisg
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Concentric(Cylinderc , Cylinderg)
−Hc∕2 ≤ Distance(Planec , Planeg) ≤ Hc∕2

Skill Nullspace

A cylinder + Rotation around nc

Fig. 3. A cup grasping task expressed using geometric constraints with
inequalities (Hc , Rc and nc are the height, radius and axis of the cup),
resulting in the skill nullspace (right).

1) Grasping a cup: This skill involves grasping a cylin-
drical object (a cup). The constraint-based formulation of
this skill is shown in Fig. 3 with some sample target poses
for grasping and the nullspace of its geometric constraints.
The relative position of the cup and gripper in the grasp
skill are underspecified, with one DoF as the rotation along
the cylinder’s axis of cup nc . The translation manifold of
this skill nullspace is a cylinder. The grasp poses lie on the
cylinder with freedom along the translation axis nc within
the height Hc and rotation around axis nc .

2) Other skills: Besides grasp skills, we also learnt sev-
eral other skills. Fig. 4 lists the constraint-based formulation
of the skills and their nullspace of geometric constraints.

∙ Place: Place an object on a plane. The geometric con-
straint for this skill is that Planec , the bottom plane of
the cup is coincident with Planef , the table plane. The
nullspace of this skill is a two DoF translation along
Planef , and one DoF rotation along the normal direction
of Planef . Fig. 4a illustrates some sample poses in this
nullspace.

∙ Move: This skill involves moving a cup or a tray
containing liquid, where the axis nc should be parallel
to nf to avoid spilling (see Fig. 4b).

∙ Pull: For pull, the center point Pointg of the gripper
must move along the desired line Linef between a start
and end point. During this movement, the orientation
of the gripper is free around one axis and defines the
nullspace of the skill. Fig. 4c shows some sample target
poses for the gripper and also illustrates the nullspace
of its geometric constraints.

∙ Mix: The desired trajectory of this task is a Circlef .
The tip of the mixing tool follows this desired trajectory

2See demo 1 of the video: https://youtu.be/8DFZG8qrwYA
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Fig. 4. Geometric constraints and nullspaces for the learnt skills described with their transformation manifolds and inequalities where necessary.

while the tool line, which is parallel to the gripper Axisg ,
maintains a fixed distance (radius) to the axis of the cup
nc . Fig. 4d shows some sample poses.

∙ Pour: This skill is a pure rotation movement around
one axis based on one point on the cup. The rotation is
between a starting angle and an ending angle. Some
sample target rotations and also the nullspace of its
geometric constraints are illustrated in Fig. 4e.

Similarly, more basic robot skills and tasks can be for-
mulated using geometric constraints and learnt using our
framework, e.g. writing, erasing and so on.

B. Skill Execution on iCub

Our experimental platform is the open-source iCub hu-
manoid robot with 53 DoF. We conducted experiments on
iCub with 7 DoF on each arm and 9 DoF on each hand.
In our framework, the robot learns the skills as geometric
constraints. Solutions in the nullspace of these constraints
are desired poses for the robot to perform this learnt skill.

Fig. 5 shows six basic robot skills in a human-robot inter-
action scenario that are learnt by iCub using our framework.
The pictures in the first row show the human demonstrations
of each skill. After learning the geometric constraints and
nullspaces, iCub is able to perform these skills adaptively,
with different parameters (e.g. different objects position,
different object shape parameters).

C. Skills Sequence

In this section, we demonstrate a tea/coffee making task,
performed by the iCub using the learnt skills. The task
contains the following sequence of skills:

1) Pull: As the cup is too far, iCub first needs to pull
the cup nearer to the center of the table.

2) Grasp + Pour + Place: iCub grasps the tea bottle,
pours tea leaves into the cup, and then places the bottle
back on the table.

3) Grasp + Pour + Place: iCub grasps the water bottle,
pours water into the cup, then places the bottle back.
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Fig. 5. iCub learnt the skills from human demonstrations based on geometric constraints and skill nullspace.

4) Mix: After putting the tea/coffee and water into the
cup, iCub mixes them with a spoon.

5) Move (Move Tray): The tea/coffee is prepared and
iCub will grasp it and offer to the human directly or
put it on a tray first then offer to human. In this step,
the move skill should keep the cup upright since there
is liquid inside the cup.

D. Prioritized Task Control

We perform other tasks together with learnt skills using
our optimization-based prioritized task control.

1) Cup grasping with obstacle avoidance:
The obstacle avoidance task is at a higher priority,
and our constraint solver [23] tries to find an optimal
solution that avoids the collision, while also adjusting
the grasp position within the learnt nullspace of the
Grasp skill (see Fig. 6b)

2) Compliant interaction with cup upright:
In this task, the human is interacting with iCub us-
ing a compliant mode, combining force and motion
constraints into a prioritized task controller [27].3 The
constraint is that the cup held by the iCub has to be
kept upright during the interaction since there is liquid
inside the cup. We define the higher priority task as
the learnt Move skill, which is keeping the orientation
of the cup upright. Then the compliant interaction is
performed in the nullspace of the Move skill. Fig. 6a
shows two different moments during the interaction,
where we can see the cup is always kept upright.

V. CONCLUSIONS

This paper presents a Learning from Demonstration (LfD)
framework based on a constraint-based skill model, where
a set of parameterized geometric constraints representing
the skill can be inferred from human demonstrations. We
use human demonstrations of basic skills to collect data
about the kinematics information between different objects

3See also demo 2 - part 3 of the video: https://youtu.be/8DFZG8qrwYA

Fig. 6. (a) iCub keeps constraint (cup upright) when interacting with human
(b) cup grasping with obstacle avoidance using a 6-DoF robot.

involved in the skill. We developed an algorithm to fit
this data to a geometric nullspace manifold and also infer
the skill’s underlying geometric constraints. The inferred
geometric constraints provide semantically rich information
about the skill and can be used to adapt it to different kinds
of robots and objects. These geometric task constraints are
combined with the robot’s and environment constraints, and
solved together to generate target motions for the robot.
The proposed framework is evaluated on both a simulated
industrial manipulator and the iCub humanoid robot.

In our experiments, we have considered six basic skills.
For this purpose, the simple non-linear least squares re-
gression to fit the data was sufficient. This design was
based on our observation that constraint-based approaches
with a limited set of primitive shapes can be powerful
in describing a large variety of engineering models and
corresponding robotic tasks. However, with more complex
skills and constraint models, a more powerful algorithm for
data fitting may be required. Moreover, bringing the deep
learning methods to cover the whole LfD pipeline from
human observation to inference of the geometric constraints
would also be interesting for future work.
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