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Abstract. Although industrial robots are successfully deployed in many
assembly processes, high-mix, low-volume applications are still diffi-
cult to automate, as they involve small batches of frequently changing
parts. Setting up a robotic system for these tasks requires repeated re-
programming by expert users, incurring extra time and costs. In this
paper, we present a solution which enables a robot to learn new objects
and new tasks from non-expert users without the need for programming.
The use case presented here is the assembly of a gearbox mechanism.
In the proposed solution, first, the robot can autonomously register new
objects using a visual exploration routine, and train a deep learning
model for object detection accordingly. Secondly, the user can teach new
tasks to the system via visual demonstration in a natural manner. Finally,
using multimodal perception from RGB-D (color and depth) cameras and
a tactile sensor, the robot can execute the taught tasks with adaptation
to changing configurations. Depending on the task requirements, it can
also activate human-robot collaboration capabilities. In summary, these
three main modules enable any non-expert user to configure a robot for
new applications in a fast and intuitive way.

Keywords: Robotic manipulation + Multimodal perception - Object
and task teaching - Grasping and insertion + Human-robot collaboration

1 Introduction

With the intensified development of robotic technologies, robots are expected to
work alongside and together with humans to complete tasks and improve pro-
ductivity. This requires Human-Robot Collaboration (HRC) capabilities [1,2], to
adapt to changing configurations and human behaviours. The current COVID-
19 pandemic’s social distancing requirements force companies to operate at a
reduced capacity, while production demand remains strong and requires adapt-
ability. Collaborative robots (cobots) can help to address this challenge, provided
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that they are safe, flexible, robust, easy and fast to deploy. Notably, deployment
time is critical, to ensure little downtime and fast return on investment.

However, such systems are currently highly constrained in their ability to
collaborate with humans: (i) by their inability to interact naturally through com-
mon modalities like vision, speech and touch; and (ii) by their limited ability to
adapt in task performance (re-programming is needed even for small changes in
procedure) [3]. In this paper, we seek to develop a suite of capabilities that would
allow cobots to adapt to humans and their work environments through natural
interactions and robust learning, to remove the need for specialized infrastruc-
ture, expert programming and human training, thus reducing deployment costs.

Fast object learning is a desirable feature, to quickly adapt to new objects,
but is still underdeveloped for many real-world problems. Legacy deep learning-
based methods have achieved remarkable performance in object recognition but
are not directly usable for domain-specific problems: off the shelf models (i.e.,
pre-trained on large-scale, generic dataset) perform rather poorly on the recog-
nition of novel industrial objects [4]. To achieve good performance, sufficient
high-quality training data is required, which is costly and time-consuming. Some
works deal with the generation of high-quality training data by (i) simplifying
the data collection and annotation process using specific devices or user inter-
faces [5], (ii) automating the generation of data samples through augmentation
and synthesis [6]. For the former, it still involves a lengthy process of data sam-
pling and manual annotation. For the latter, the characteristics of synthesized
data need not match with those of actual data from domain-specific operating
environments, leading to unstable and deteriorated performance. A few works
resort to interactive data collection and annotation [7-9]. The agent is equipped
with the ability to register object instances with human guidance. However, they
are restricted by the limited functionalities of hardware (e.g., robot mobility) and
software, thus only addressing small-scale toy problems. It is paramount to fill
this gap with an effective interaction protocol for agents to learn from human,
and further to perform self-learning similar to human learners.

Additionally, setting-up a cobot without programming requires real-time
parsing of human inputs into recognized task activities and human actions, to
then relate them to a task representation for task understanding and learning.
This research will notably develop capabilities for modelling task structure and
understanding a human worker’s roles during task execution and collaboration,
adapting to uncertainties and exceptions over time. There is a rich and growing
literature of robotic learning from demonstration (LfD) due to the importance
and advantages of scaling up robots for new tasks without hand-crafted pro-
gramming, as mentioned above. A full review of the topic is beyond the scope of
this paper; readers may refer to recent surveys [10-12]. Existing LfD solutions
focus on capturing signals directly related to the robot operations, from kinaes-
thetic, motion-sensor, or tele-operated demonstrations on the end-effector’s pose,
or force and motion trajectory. They focus on learning a policy of task execu-
tion using models like Hidden Markov Models (HMMs), Gaussian Mixture Mod-
els (GMMs), Dynamic Movement Primitives (DMPs), and Task-Parameterised



Towards a Programming-Free Robotic System for Assembly Tasks 205

‘_4))( -
Xz 2 R &
p
Fig. 1. Robotic system setup

Gaussian Mixture Model (TP-GMM), as well as Deep Reinforcement Learning
(DRL) recently. Our method instead focuses on learning a general and conceptual
task representation based on visual observation of human hand actions which is
beyond the state and action space of the robot’s pose, force or motion.

2 Robotic System

The robotic system used in this work is based on a robot manipulator, coupled
to two cameras and a 2-finger gripper with a tactile sensor.

Figure 1 shows the overall robotic system setup. More specifically, it consists
of a 7-degree-of-freedom (7-DoF) KUKA LBR iiwa robot manipulator, which
enables a wide range of motions, as well as safe HRC with its compliant mode and
collision detection capability. To identify and locate the objects to interact with,
two RGB-D cameras are used: a fixed eye-to-hand one (Microsoft Kinect Azure)
detects the objects in the robot workspace, and estimates their 3D positions
with respect to the robot. Based on this, the robot can move closer to a desired
object, and then better estimate its location by using an eye-in-hand camera
(Intel RealSense D435). Eventually, it is anticipated that these vision outputs
have errors due to calibration imperfections, occlusions, or limited resolution for
instance, and that tasks like grasping will happen blindly at some point (when
the robot gets too close to the object to see it). To overcome these limitations, the
gripper (Robotiq 2F-85) is equipped with a XELA uSkin XR1944 tactile sensor,
which is used to estimate with how much offset an object has been grasped.
This main suite of sensors is used to bring down the perceptual error in order to
interact with the gearbox components, in this use case.

Finally, the whole system also comes with an intuitive Graphical User Inter-
face (GUI), available on a touch monitor, allowing easy control and set-up of the
robot. The user also gets audio feedback on the machine’s status and actions.
The different components of the system, both hardware and software, are brought
together with The Robot Operating System (ROS) [13]. The overall software is
made of modules coded in C++ and Python.
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3 Framework for Programming-Free System

To achieve programming-free task execution, the robotic system should be capa-
ble of detecting objects, understanding tasks, and precisely executing them.
Therefore, the solution proposed in this paper mainly consists of three modules:
object teaching, task teaching, and task execution. The corresponding block
diagram is depicted in Fig.2. The object teaching module is for autonomous
object registration and detection, the task teaching module is for understanding
tasks from visual human demonstrations, and the task execution module is for
executing the learned and composed tasks, using multimodal perception.

3.1 Object Teaching

There are three key steps for object teaching as explained below. The entire
process is summarised in Fig. 3.

Canonical View Selection. This first step is used to actively capture an
object’s informative views, by exploring various viewpoints around it and and
select the most informative ones based on a criteria termed goodness of view
(GOV).

— Object Segmentation At a viewpoint, the RGB-D camera provides a color
image and point cloud of the scene. First, we need to get a regional mask of
the object. For this, the Point Cloud Library (PCL) is used, to estimate the
dominant plane and separate it from the object to register. Alternatively, for
small or flat objects, which are difficult to be isolated, we use color information
to perform segmentation (provided that there is adequate contrast between
the object and table top). The mask is then used to extract the object from
the RGB image.

— Goodness of view The goodness of a viewpoint is defined based on the
informativeness of the object, which is computed from a set of basic visual
features [14,15]. In this work, silhouette length, depth distribution, curvature
entropy, and color entropy are considered in the computation [16]. Canonical
views are registered as those with higher combined GOV.
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— Viewpoint exploration Canonical viewpoints are sampled by evaluating
the aggregated GOV of the visited viewpoints on-the-fly. It is assumed that
the RGB-D camera is calibrated against a set of viewpoints on a spherical
surface and the target object is located at the sphere center (cf Fig.3). The
robot then follows the OnLIne Viewpoint Exploration (OLIVE) method [16]
to visit the viewpoints. The RGB-D data captured at each viewpoint is used
to extract object features and compute the GOV. Given any viewpoint, the
robot searches the local maxima of GOV, where the GOV is computed as the
weighted sum of individual GOV metrics. Once the local maxima is found,
the next view is chosen as one with the largest geographical distance to the
current view.

Data Augmentation. Contemporary object detectors require a reasonably
large amount of training images to reach good accuracy. The image samples from
the previous step may be too few to reach the desired detection performance. To
enhance the dataset, we perform a series of image manipulation techniques to
augment the data. In essence, we superimpose the object’s image (mask) onto
various backgrounds to generate synthesized data. The techniques adopted in
this study include (i) 2D variation and 3D transformation to add variations of
viewing perspective [17], (ii) blending to remove boundary artifacts [6], and (iii)
object scaling to allow optimal object sizes [18§].

Training Object Detectors. Once the training images of one or a few novel
objects have been generated, the system performs on-site object detector train-
ing. Ideally, the object learning is conducted incrementally, whereby new object
classes are added gradually to existing classes. In other words, the detector
learns new object classes without catastrophic forgetting of old ones. In this
study, we explored several incremental learning algorithms, such as the methods
presented in [19] and [20]. Notably, these incremental learning techniques still
require lengthy training time due to the distillation operation. Hence, in practice,
we implemented the training protocol of aggregated training (i.e., to include all
training images of known and unknown classes) on the conventional framework
of Faster-RCNN with ResNet101 [21].

1. Canonical View Selection o Segmentation | 1. Object Detector Training

Pre-saved

Background
Images

Augmented Ground
Truth Annotations

Color Image

Evaluate Goodness of View

Fig. 3. Object teaching process
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3.2 Task Teaching

The task teaching module has been developed to allow any non-expert user to
teach new tasks to the manipulator, simply based on visual demonstration. For
this, we target at establishing a structured semantic representation of robotic
task which matches human common knowledge of task representation. To this
end, we propose a novel graph-based task representation: Compounded Task
Graph (CTG). The CTG task model provides a concept-level hierarchical rep-
resentation of industrial tasks. There are three layers of nodes in CTG:

— Atomic action (Ay): this node represents an atomic hand action in an
industrial task, such as pick up, move_to, release, etc. The atomic action
nodes form the bottom layer of CTG.

— Primary task (7}): this node represents a sequence of atomic hand actions
to complete a basic task. It is a parent node of a sequence of atomic actions.

— Compounded task (7.): this node represents a complex task which involves
several primary tasks, and/or other compounded tasks as sub-tasks of it. It
is a parent node which has a few primary task child nodes in the lower layer,
and/or other compounded tasks child nodes (sub-tasks) in the same layer.

Task Teaching on Vision Perception. As mentioned previously, the aim
here is to reduce the need for human expertise and coding efforts to produce the
CTG of a new task when deploying a cobot. To this end, we propose a novel
task teaching approach based on learning from visual human demonstration, to
automatically generate the CTG of a new task.

First, the vision system runs a previously trained Faster R-CNN to detect
task-related objects and hands in each incoming frame. A tracking algorithm
relying on visual working memory is designed to track the detected objects
and hands, and estimate their inter-frame movements. Based on these visual
observations, a two-level probabilistic logic reasoning is designed to recognize
task-related hand actions in real-time.

The first level, visual reasoning, tries to capture four kinds of hand move-
ments, expressed as probabilistic logic rules:

— move_to(h;,05) - dist_reduct(h;,0;) & orient _consistency(v;, vi;);
— hold(h;, 05) :- hand_static(h;) & hand_touch(h;,o05) & dist__const(h;, 0;);
— move_together(h;, 0;) - hand_move(h;) & hand_touch(h,, 0;)

& dist_const(h;,0;) & orient _consistency(v;, v;);
— move_away(h;, 0;) :- hand_move(h;) & dist _increase(h;, 0;)

& orient_consistency(v;, vj;);

where, for example, for move_to(h;, 05), if the hand h; is moving towards object
0;, the distance between h; and o; should be reduced constantly, and the motion
vector of h; should be aligned with the orientation vector from h; to o;. Hence, if
the probabilities of dist_reduct(h;, 0;) and orient_consistency(v;, v;;) are high
based on visual observations, the probability of move_to(h;,0;) is high.

The second level, probabilistic reasoning, tries to capture atomic hand
actions. During a short duration of recent observations, the algorithm predicts
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the probabilities of atomic actions based on accumulated evidence of basic hand
movements. The probabilistic logic rules are expressed as:

— pick_up(hi,05) - move_to(h;,05) & hold(h;,0;) & move_together(h;,0;);
— move_a2b(h;,05,0r) :- move_together(h;,0;) & move_to(h;,or);
— release_a2b(h;, 05, 0r) - move_a2b(h;,05,0r) & hold(h;,0;)

& move_away(h;,0;) & move_away(h;, or);

where, for pick_up(h;,0;), if the hand h; has moved to object o;, has held the
object statically for a while, and then moves together with it, it means that an
atomic action of pick_up(h;, 0;) has happened.

During the demonstration, the vision system tracks the events and produces a
list of atomic actions gradually. Once the demonstration is completed, the system
performs Bayesian inference on the list of atomic actions to extract the task’s
related actions and associated objects. For example, for a demonstrated task of
insert(a,b), Bayesian inference tries to find the maximum joint probability:

Pl = max [Pr(i, j, kla,b) Pou(i, . Fla,b) Py (i, jla) Py (m, ) P (p,m)] - (1)
1],

where P,(i, j, kla,b)=P(release__a2b(h;,0;,0k)|0; = a,0 =b), Py, (i, ], kla,b)=
P(move_a2b(h;,05,01)|0; = a,0, = b), P,(i,jla)=P(pick_up(h;,o0;)|o; = a),
and P, represents temporal constraint: Py(m,r)= P(t, < t.). Once the max-
imum joint probability is larger than a threshold, the observed task is con-
firmed, and a CTG is generated with corresponding atomic actions and associ-
ated objects.

Task Composition with Graphical User Interface. With the capabilities
presented above, any non-expert user is able to both teach new objects and
demonstrate new tasks to the robot without manually programming anything.
Furthermore, one can also leverage on the previously taught tasks, using the
GUI to compose more complex or repetitive ones, rather than demonstrating
them again. We term this approach “Programming-Free” system. Additionally,
for tasks requiring HRC, the user can chose to activate the robot’s impedance
mode to make it compliant. This ensures a safe execution, as well as ease for
joint manipulation, as the user can manually move the end-effector.

3.3 Task Execution

Once a task has been taught (e.g. accurate, adaptable grasping and insertion of
a shaft), multimodal perception is used to execute it, without having to perform
extensive calibration and risk erroneous and unsafe execution.

Locating Objects Using Visual Inputs. In order to locate objects in the
robot workspace and interact with them, the system is equipped with two RGB-D
cameras. The first one is fixed and has a bird’s eye view on the scene. Its extrinsic
parameters have been calibrated with respect to the robot frame, using [22],
meaning that its position and orientation are known in this frame. In order to
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estimate the objects’ 3D positions, the system first runs the previously mentioned
object detector on the RGB image. Then, to estimate the 3D position of a specific
object, it takes the center of the object’s bounding box and gets the depth of
the corresponding pixel (RGB and depth image have been registered).

Then, the following formula is used to get the 3D position of the mentioned
pixel, in the camera frame: z = d/a; x = (n —¢g) * 2/ fo; y = (M —¢y) * 2/ fy,
where d is the depth read at the pixel of coordinates (n,m), « = 1 or 1000
depending on whether depth is given in m or mm. f;, fy,c, and ¢, come from

fa: 0c; 0
the intrinsic matrix K = | 0 f, ¢, O].
0010

Finally, the system converts the obtained coordinates into the robot frame,

using the following calculation:

X 1- 2(@3 + (ﬁ) 2(Qw~Qy - Qz-Qw) Q(Qz-q,z + Qy~Qw) 2%

X
Y 20009y + @2qw) 1-2(a2 +42) 2(9y-0: — ququ) ty | |y
Z 2(%-(12 - Qy-qqu) 2(Qy-‘]z + qgc-Qw) 1- 2(‘]3« + qs) t, z
1 robot 0 0 0 1 1 camera

where ¢z, ¢y, ¢2, quw and t;, 1y, 1., represent the camera’s extrinsic parameters.

A similar process has been used for the in-hand camera: its extrinsic param-
eters have been calibrated with respect to the robot’s end-effector. Then during
run-time, this information is combined to the end-effector’s actual position, to
compute the camera’s position and orientation with respect to the robot’s fixed
frame. (2) is then applied to compute the 3D positions of objects perceived
through it.

A critical step in the studied use-case (gearbox assembly), is the insertion
of a shaft into a circular bearing cup. There are three of them and the user
can choose which one to insert in, via the GUI or demonstration. To perform
this, visual perception inputs are used to locate this insertion target, based on a
circle detection and tracking algorithm we developed: once it locates the target
object, it crops the image around it and generates a list of potential circles for
the insertion. Then, using a custom-trained support vector machine (SVM), it
will output the true candidates, which are the three insertion possibilities. This
solution is able to track the circles as well as keep in memory their position with
respect to each other (output example is shown on Fig. 6).

Grasping and Inserting Objects with Tactile Perception. Once the cam-
eras detects the object of interest and locate it, the robot manipulator approaches
and grasps it with the gripper. However, due to internal and external uncertain-
ties, such as lighting change, viewing angle, calibration error, resolution and
occlusion, the vision accuracy is compromised. Therefore, we propose to attach
a tactile sensor to one of the gripper fingertips. This device detects objects as
well as the contact surfaces profiles, and provides fine-scale location and shape
information. The XELA uSkin XR1944 sensor, as shown in the left side of Fig. 1,
is used in this research. It has 16 taxels arranged in a 4-by-4 array that detect
forces in Cartesian coordinates [23].
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In this work, the Naive Bayes algorithm is employed to train a classifier
to detect the position offset of the object (e.g., a shaft) being grasped with
respect to the gripper’s fingertip. Assuming that the gripper applies a constant
force to grasp the shaft statically, the algorithm takes the normal forces, i.e.,
forces in z direction (cf. Figure 1), as input features and assumes them to follow
Gaussian distribution. Given the regular shape of the shaft, the normal forces
are averaged along four columns (y direction) of the taxel array and the position

offset in the z direction is estimated following the Bayes’ Theorem p(yx|x) =

p(yk)*(p()r\yk)
p(z
4. Gaussian kernel is used to approximate the likelihood of features. The feature

plot shown in Fig.4 demonstrates the distribution of four extracted features.
Each feature corresponds to the average reading of one sensor’s column. Each
subplot represents one feature, the horizontal axis represents the position offset
in x direction in mm, and the vertical axis represents the force readings.

1
exp(—
1/ 271'05

where p, and o, are estimated class mean and standard deviation.
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Fig. 4. Boxplot of four extracted features

To validate this approach, a test dataset has been collected: the shaft has been
grasped with different offsets, equally spaced. We then compared ground truth
values to the predicted ones. Overlapping between two sets of values demon-
strated that the offset position can be estimated with an accuracy of less than
2mm thanks to the proposed algorithm.

4 Experimental Results and Discussions

To validate the effectiveness and performance of the proposed system, experi-
ments have been conducted with the robotic system setup shown in Fig.1. As
mentioned previously, a critical step to perform is the insertion of a shaft into
one of the casing’s bearing cup. We use this task for validation.
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4.1 Object Teaching

The object teaching module (using four pieces of Geforce RTX 2080 in the train-
ing, one for inference) can achieve the mAP of more than 0.86 after 10 epochs.
More detailed results and discussions can be found in [24].

4.2 Task Teaching

To validate the effectiveness of the task teaching, three different users are asked
to demonstrate to the robotic programming-free system the task of inserting a
specific shaft into a casing hole. It takes 18.7s on average for the robot to learn
the task using the proposed method while it takes roughly twice as much time
for a user to program the task for the robot using our designed GUI. Addition-
ally, while we have not documented the task learning success rate, experiments
have shown that the algorithm is robust and reliably extract the relevant task
structure. Existing benchmark datasets and evaluation metrics might not be
applicable to this specific branch of task learning, yet the results obtain show
that the proposed task teaching method is effective, efficient and intuitive.

4.3 Task Reproduction

For comparison purposes, an ablation study is performed, with the following
configurations, for the shaft insertion task: (i) global (eye-to-hand) camera only;
(ii) global camera + tactile sensor; (iii) global camera + eye-in-hand camera; and
(iv) global camera + eye-in-hand camera + tactile sensor. 20 tests are carried out
for each configuration, respectively, with similar objects positions and difficulty.
The success rates of using different configurations are shown in Table 1.

Table 1. Success rate of object execution with different configurations

Configuration Grasping | Insertion
Global camera, only 80% 5%
Global camera + tactile sensor | 80% 15%
Global + in-hand camera 100% 60%
Both cameras + tactile sensor | 100% 85%

It can be observed that relying only on the global camera gives decent grasp-
ing results, but even in successful cases, experiments showed that it would be
done either with an offset or the object is not picked up straight. As for the
insertion, this sensor alone fails to properly estimate the insertion target (hole)



Towards a Programming-Free Robotic System for Assembly Tasks 213

location, mainly due to viewing angle restrictions. Adding the in-hand camera
to the system considerably enhances the results for both grasping and insertion.
It helps to properly center the gripper on the object to grasp, and prevents the
gripper from colliding with the object. It also helps to more accurately locate
the target hole for insertion. Yet, the visual perception inputs are not perfect,
which results in a slight offset between the object axis and the gripper center.
It can be observed that the tactile sensor combined to the proposed algorithm
greatly helps to compensate for this and improves the insertion success rate.

4.4 Collaborative Task

The user can also request the system to help him/her in collaborative tasks. A
perfect use-case for this is the insertion of three shafts simultaneously, as these
components need to be inserted into the casing at the same time. It is impossible
for a worker or the robot to single-handedly complete this task reliably. Thus,
a new collaborative insertion task can be composed via the GUI, using the
previously taught insertion action. The step of insertion in the learnt task will
be set to be done in collaborative mode, i.e., the robot compliant mode will be
enabled for safer and easier execution, while waiting for human trigger.

Fig. 5. Robot operations during collaborative insertion task

The robot operations for this collaborative task are shown in Fig. 5. In prac-
tice, the system will stop and inform the user after it grasps the shaft and moves
it above the casing. It will then trigger the insertion once it senses a pulling-down
force/motion from the co-worker. Eventually, the collaborative function allows
easy HRC for a challenging task.

4.5 GUI

Most of the interactions with the system are done via a custom GUI, available
on a touch monitor. Figure6 depicts the different use cases.
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Fig. 6. GUI for object teaching, object detection, task teaching and task execution

5 Conclusion

In this paper, a framework with intuitive interactions is proposed towards
programming-free robotic system setup. The framework consists of object teach-
ing, vision-based task teaching and multimodal-perception-based task execution.
Several experiments are carried out with the use case of an assembly task (shaft
insertion) to validate the effectiveness and performance of the proposed frame-
work. The experimental results show that the proposed method can not only help
the robot to register objects and learn tasks in a fast way but also improve the
task execution precision and robustness through multimodal perception. Com-
pared to other simpler configurations, the ablation study showed that combining
two cameras and a tactile sensor brings considerable improvement for grasping
and insertion tasks.
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