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Abstract— Manipulation in a densely cluttered environment
creates complex challenges in perception to close the control
loop, many of which are due to the sophisticated physical
interaction between the environment and the manipulator.
Drawing from biological sensory-motor control, to handle the
task in such a scenario, tactile sensing can be used to provide an
additional dimension of the rich contact information from the
interaction for decision making and action selection to manoeu-
vre towards a target. In this paper, a new tactile-based motion
planning and control framework based on bioinspiration is
proposed and developed for a robot manipulator to manoeuvre
in a cluttered environment. An iterative two-stage machine
learning approach is used in this framework: an autoencoder
is used to extract important cues from tactile sensory readings
while a reinforcement learning technique is used to generate
optimal motion sequence to efficiently reach the given target.
The framework is implemented on a KUKA LBR iiwa robot
mounted with a SynTouch BioTac tactile sensor and tested with
real-life experiments. The results show that the system is able
to move the end-effector through the cluttered environment to
reach the target effectively.

I. INTRODUCTION

Robots are increasingly expected to perform physical inter-
action and manipulation tasks in a given environment, such
as grasping, pick-and-place, human-robot interaction [1], [2],
etc. To achieve these dexterous and dynamic interactions with
the environment, touch is crucial to close the control loop
with adequate feedback [3], especially when visual cues are
insufficient, unusable or even unavailable for the robot to
make a good-enough informed decision for motion planning.
One such example is the search mission under rubble. In
this vision-denied densely-cluttered environment filled with
a mixed range of objects such as rocks, sand, parts of daily
objects, debris and human bodies, manoeuvre through the
rubble effectively can only rely on the sense of touch.

Traditionally, touch is sensed at a single point, such as
the end-effector, through the use of a force/torque sensor or
estimated by joint torques. However, for complex manipula-
tion tasks, far richer touch information (e.g., multiple point
touch) is required for environment property inference and
contact state estimation on the fly [4]. Recent advances in
tactile perception show that tactile sensors which mimic the
cutaneous receptors beneath the human skin, can be used
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to understand the interacted environment, such as surface
textures [5], [6], edges [7], object pose [8], collisions [9],
contact forces [10], contact configuration, slippage and object
geometry [3]. This makes tactile sensing a complementary
sensory modality to vision in providing environmental infor-
mation for a manipulation task.

One challenge for tactile sensing as highlighted by Zou
et al. [11] is how to develop an effective method to extract
insights from the rich and complex tactile data, especially
in unstructured environments. Many approaches have been
proposed to acquire application-driven results using different
machine learning techniques such as Decision trees and
Naive Bayes trees [12], Bayesian exploration [13], Support
Vector Machine (SVM) [14], deep learning and active per-
ception [15], [16], etc. These outcomes show that useful
information can be extracted from tactile data using machine
learning approaches specific to the tasks.

Apart from recognizing the environmental patterns, on-
the-fly decision making based on the perceived patterns to
generate a motion sequence is needed to enable the robot
to manipulate the environment and manoeuvre to the target.
For example, the manipulator needs to avoid or minimize
the resistance from the environment applied to the robot
when it is moving towards the target. This is a challenging
motion planning problem because of the unavoidable multi-
contacts and interactions with dense number of obstacles in
the environment [17]. To our knowledge, limited research
has been carried out on tactile-based motion planning for
robot in clutters. In [18] and [19], model predictive control
is used to address the reaching problem in a lightly cluttered
environment. Moreover, motion control approaches, includ-
ing feedback linearization control and adaptive control, are
proposed to control a redundant manipulator in environments
with uncertainty using tactile feedback [20], [21]. However,
most approaches still require contact models which are
difficult to build in a real-life unstructured environment.
Thus, given the tactile information, a data-driven approach to
build a model for motion plan generation can be potentially
advantageous [22], [23].

In nature, primates are able to perform excellent actions to
move their hands/fingers or manipulate objects in a cluttered
environment although such environment is complex and un-
structured. Therefore, an instinctive approach of controlling
the robot manipulation is to adopt the biological motor
control strategy. In this paper, a bioinspired hierarchical end-
to-end motion planning and control framework leveraging
on the information learned from the raw tactile data is
developed. The proposed framework mainly focuses on the
robot manipulation in a densely cluttered environment with
the objective of effectively manoeuvre to a given target.



The main contributions of this paper are: (i) propose and
develop a bioinspired motion planning and control frame-
work based on tactile feedback for robot manipulation in a
densely cluttered environment, which offer a better solution
than the conventional position control and impedance con-
trol methods; (ii) design an iterative two-stage data-driven
approach for tactile state representation and manipulator
motion planning. The rest of this paper is organized as
follows. In Section II, the robotic system and the task are
described. Then, the motion planning and control framework
is presented in detail in Section III. Section IV presents the
experimental results and discussions before conclusions are
drawn in Section V.

II. ROBOTIC SYSTEM AND MANIPULATION TASK

The robot and experiment setup are shown in Fig. 1.

A. Robot Manipulator with Tactile Sensor

The robot system consists of a 7-degrees-of-freedom (7-
DoF) KUKA LBR iiwa 14 R820 manipulator and a Syn-
Touch BioTac tactile sensor secured by a 3D-printed end-
effector. The iiwa robot offers high flexible motion and high-
performance servo control with reliability of +0.15 mm. The
BioTac sensor has 19 impedance sensing electrodes, 1 hydro-
acoustic pressure sensor, and 1 thermistor [24], providing fine
multi-modal sensing with a force resolution of 0.01 N and a
pressure resolution of 0.0365 kPa.

B. Manipulation Task in a Densely Cluttered Environment

The robot system is required to perform a real-world ma-
nipulation task of manoeuvring to a target pose in a densely
cluttered environment (e.g. a box of soft plastic balls). Fig.
2 illustrates different scenarios of this manoeuvre task. In
an environment without unknown obstacles as depicted in
Fig. 2(a), motion planning and control is straight forward.
However, in a cluttered environment shown in Fig. 2(b),
the robot will need to overcome obstacles that it comes
into contact with to reach the target. Without an effective
motion planning framework that considers the available
tactile information, the robot may either at one extreme be
unable to get the target at all, or at the other, damage itself
and/or the environment by colliding into the obstacles to get
to the target. This work focuses on finding a possible and

Fig. 1.

System setup

(a) (b)
Fig. 2. Tllustrations of a manipulation task in different environments (orange
block denotes the target position; blue circles denote unknown obstacles):
(a) structured environment (without obstacles); (b) cluttered environment
(with motion planning to reduce resistance)

optimal motion/path based on the tactile information that can
minimize the resistance in the cluttered environment while
tracking the target as shown in Fig. 2(b).

III. TACTILE-BASED MOTION PLANNING AND CONTROL

In the biological sensory-motor system, the cerebral cortex
provides concise representations of sensory state, context,
and action while the basal ganglia are involved in action
selection by evaluation of candidate actions [25], [26]. In-
spired by the mechanism of the human nervous system and
the work presented in [27], a tactile-based motion planning
and control framework is proposed as depicted in Fig. 3.

The proposed framework mainly consists of three mod-
ules: tactile perception module, motion planning module and
motion control module. Drawing from the investigation on
biological system that the cerebral cortex is specialized for
unsupervised learning while the basal ganglia are special-
ized for reward-based learning [25], autoencoder (AE) and
reinforcement learning (RL) are employed as the learning
mechanisms for the tactile perception module and the mo-
tion planning module, respectively. Therefore, the proposed
framework has an outer feedback loop from the tactile
sensing to the robot manipulation and two inner learning
loops: one is within the tactile perception module and the
other is between the agent and environment.

In a nutshell, the tactile sensing module receives the
readings of the 19 sensing electrodes and makes an inference
on the touch state. This state information is passed to the
motion planning module which computes a corresponding
action: the optimal motion commands at the current state.
Finally, the motion control module regulates all the robot
joint motors to achieve a desired action. Note that as this
work focuses on developing the tactile perception and motion
planning modules, the built-in position control mode of the
robot is used as the motion control module.

A. Tactile Information Representation using Autoencoder

The AE, an unsupervised learning mechanism, is em-
ployed to extract the important features in a tactile instance
without the need for explicit labels when the contact arises. It
also reduces the input dimensionality to the motion planning
module, allowing faster learning convergence of the module.

In this paper, a multilayer perceptron-based autoencoder
(MLP-AE) is designed for representation learning because



the MLP is simple and efficient. It consists of an encoder and
a decoder, which can be defined by the following transitions.

£X+Z}

P = argmin||X — (& 0 2)X||%, (1)

where & and 2 represent the encoder and decoder, respec-
tively, X is the input data, Z is the encoded data, and X' is
the reconstructed data.

In the MLP-AE, the output layer has the same number of
neurons as the input layer with the purpose of making the
reconstructed data to be close to the input data. The designed
MLP-AE is represented by the following equations.
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are the weight matrices, x € R is the input vector, z € R?
is the encoded vector, X' € R is the reconstruction vector,
b e R, b2 ¢ R?, b ¢ R/, b € R are the bias vectors,
h € R/, i € R/ represent the hidden layer variables, and y(-)
is the activation function and the logistic function is chosen:
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where exp(+) is the exponential function.
The AE is trained to minimize the reconstruction errors
between the input and reconstructed data following a loss
function based on the mean squared error (MSE) given by

1 N
LX) = 5 ) lIx =7, 3)
n=1

where n denotes the n-th set of data, N is the length of data.

B. Reinforcement Learning-based Motion Planning

For the motion planning module, the main objective is
to find the optimal motion sequence that can minimize the
pressure and resistance applied on the end-effector while
tracking the target in a short path. However, it is difficult to
plan the motion via a model-based approach in an unstruc-
tured environment. To handle this problem, RL is employed
because it offers a powerful model-free paradigm to solve for
the optimal solution [28]. A neural network-based off-policy
temporal difference (TD) reinforcement learning algorithm
is used due to good data efficiency [29].

Reconstruction

Tactile
Information
Representation

Motion action S Joint
Planning L{| Motors

A

! reward

End-
effector

Tactile Sensor Manipulator

Fig. 3.
system

An overview of the tactile-based motion planning and control

1) Reinforcement Learning: The goal of learning is to
find an optimal policy m*, which tells the agent (i.e., the
manipulator) to take an action a; corresponding to different
circumstances. By taking the action ay, the agent transitions
from state s; to sy and receives a reward ri;q on (sg,a),
where the index represents discrete time k with k& > 0.
The optimal policy #* is the policy that maximizes the
expectation of the cumulative discounted reward Ry:
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where 7 is the discount factor and 7 is the final time step.
In other words, the optimal policy can be described by 7% =
argmax, E[R;|x], and 7 denotes the policy.

The objective of the manipulation task in this paper is to
reach the target with minimum resistance. Hence, the reward
function is defined by

r=—(pillpac|* +p2lld| ), (5)

where pg. is the pressure output of the BioTac sensor which
represents the resistance applied on the end-effector, d is
the distance to the target, and p;, p, are the weightings
to determine the importance between the pressure and the
distance. It is worth noting that higher reward can be earned
if smaller p,. and d are achieved.

In the designed RL, a Q-function measures the quality
O™ (sx,ar) of taking a specific action a; at a particular state
sx under a given policy 7, where

O” (sk,ar) = E[Ry|sk, ax, ). (6)

From (6), the optimal policy is then defined as a policy
that maximizes the values of (6) over all possible state-
action pairs (s,a). Thus, the optimal function Q* is the
maximum expected cumulative reward achievable from a
given state-action pair (sg,ax): Q*(sk,ar) = maxz O (sg, ax)-
Since Q7 (sy,ay) satisfies the Bellman equation, and we have

Q" (s, ax) = E[(riepr +ymax Q° (sur, a)) s, ], (7)

where d’ is the possible action taken at state s .

2) Radial Basis Function Network-based RL (RBF-RL):
To achieve the optimal function Q* (g, ay ), an artificial neural
network (ANN) is used to represent the function (6), which
can be obtained iteratively via the learning mechanism. A
Radial Basis Function (RBF) network is chosen for the
aforementioned purpose because it is stable, easy to design
and generalize, and has simple structure, strong input noise
tolerance and fast online learning ability [30].

Let Q(sg,ax,0) be an approximation to the function (6)
with a parameter 6, then the objective of the RBF network
is to directly approximate the optimal function Q*(si,ay):
O(sg,ar,0) ~ O*(sg,ar). Such objective can be converted to
an optimization problem of minimizing a loss function:

1

Ji(ei) = EE[(yi_Q<sk’ak76i))2]’ ®)

where y; = i1 +Ymaxy Q(sir1,a’,0;_1), i denotes the i-th
episode.



The structure of the proposed RBF network is shown in
Fig. 4, where the Gaussian functions in (9) are adopted,

vl
¢;(v) =exp <—|I:J||> for j=1,2,....m, (9)

Gj

where @;(v) € [0,1] denotes the distance of the input v to
the jth region with the mean {1 ; and the variance oj ;.

The input vectors x = {x1,xp,--,x,} are the state-action
pairs. In this paper, the latent variables of the tactile per-
ception module, the pose of the BioTac sensor are set as the
states that represent the current circumstance of the fingertip.
The action is defined as a vector of point-to-point motion
indexes with different directions.

The RBF network output is a linear combination of the
RBF outputs and the neuron weights, which is expressed by

m
O(sk,ar,0:) = Y wip; =w'9, (10)
Jj=1
where the parameter 0 of the approximate Q-function is the
weight vector w, and ¢(v) = [@1 @2 (pm]T.
Finally, the weights in the RBF networks can be updated

iteratively by applying the gradient descent algorithm to the
loss function (8). The update rule is derived as follows:

Wil =W, — AV Ji(0;),

where Vg, Ji(0;) = — (vi — Q(sk, ax, 0:)) Vo,0(sk, ax, 0:).
From (10), the gradient Vg, Q(sk,a, ;) at each weight can
be obtained and the update rule is then given by

(1)

Wil =W +A (i —0(sk,ax, 0:)) 9. (12)

It is worth noting that the combination of the Q-learning
with the neural network can lead to instability or divergence
because the successive samples are correlated. To solve this
problem, the following modified y; is used [31], [32].

yi:rk+1+’yntf/le(Sk+17a/aei_), (13)
where 0. is the target parameter used to compute the Q-
function at the i-th episode. This 6; is only periodically
updated with the neural network parameters 0; every C steps,
which is slowly changed and held fixed between individual
updates.

Besides that, to balance the trade-off between exploitation
and exploration, the €-greedy exploration is applied.

Q(sier ax; 0:)

Fig. 4. Structure of the RBF network

Motion Planning

Reconstruction

Tactile Sensor

Action

Derive
Policy

Robot Hardware ~——

Fig. 5.

Detailed overall control system

C. Integration of MLP-AE and RBF-RL

The full system, integrating the AE-based tactile percep-
tion module with the RL-based motion planning module, is
shown in Fig. 5 in detail. Algorithm 1 gives the pseudo-code
of the overall algorithm, where M is the final episode, C is
a positive constant, the naive policy is a policy that moves
the end-effector to the target in the shortest distance, and
the two learning loops are trained in turn until satisfactory
performance is achieved.

Algorithm 1 Online RBF-RL with MLP-AE
Pre-train MLP-AE network with a naive policy
Initialize RBF network weights 0 and target weights 6~
while satisfied performance is not achieved do
for episode i = 1 to M do
Determine state s; by encoding the sensor output
fork=1to T do
Select action a; based on g-greedy exploration
Take action a;, observe next state sy and
receive reward g =7
7, for terminal s; |

Yi= r—|—yma/1xQ(sk+1,a’;6*),0therwise
Update 6 acgording to (12)
if ¥ mod C == 0 then
Update the target network: 6~ < 6
end if
if target is reached then
Break
end if
end for
end for
Re-train MLP-AE with the trained policy
end while

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experiments are conducted in the setup shown in Fig. 1
to verify the effectiveness and performance of the proposed
framework. In this setup, a box that is full of soft plastic balls
with uniform size (diameter of about 50 mm) is used to create
the densely cluttered environment. To implement the control
system, a computer is connected to both the BioTac sensor
driver and the iiwa controller via Robot Operating System



(ROS). The computer receives the sensor readings, computes
the corresponding action through the proposed algorithm and
sends the action command to the iiwa controller at 100 Hz.

A. Tactile Perception

To pre-train the MLP-AE, numbers of data are collected
from the sensor while the manipulator moves to different
positions in the shortest distance inside the ball pit. In total,
15000 sets of the 19 electrode outputs are used in the training
and further 3000 sets of outputs are used for testing.

The MLP-AE is trained using the MATLAB Deep Learn-
ing Toolbox by setting the sizes of the hidden layer and the
output layer of the encoder to be 10 and 5, respectively,
ie.,, [ =10, and p = 5. The scaled conjugate gradient
backpropagation algorithm is used for the MLP-AE network
training. The training process is shown in Fig. 6, where the
loss function converges during 1500 iterations of training.
Moreover, the goodness of fit on average measured by (14)
is 95.36% for the training data and validation data.

R?> =1—5S05/SS101 (14)

where SS,es = ||X, — X| |2, SSi0r = |[Xn — %a||%, and %, is the
mean of x,, forn=1,--- |N.

Figures 7 and 8 show the testing results on the trained
MLP-AE. It can be observed that the trained MLP-AE can
predict the testing data effectively, where the goodness of
fit on average is 90.58%. It implies that the designed AE
has good prediction performance and the encoder output
well represents the tactile sensing information, i.e., up to
90% tactile sensing information can be represented by the
5 encoded latent variables instead of 19 electrode outputs,
which greatly reduce the data dimension while the useful
information is kept.

Furthermore, Fig. 9 visualizes the t-distributed stochastic
neighbor embedding (t-SNE) [33] on the encoder output of
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Fig. 9. t-SNE on encoded data from MLP-AE

some circumstances. It is clearly observed from the figure
that the latent features of different circumstances (such as
left contact, right contact, front contact and two contacts)
can be separated in different clusters. Hence, it can be also
concluded that the latent space of the MLP-AE is capable of
extracting the relevant tactile features.

B. Motion Planning

1) RBF-RL Training: To effectively sample from the vast
state-action pairs in the experiment setup to train the RBF-RL
network, we randomize the positions to insert the fingertip,
the fingertip will then move according to the current policy
until it reaches the target before repeating the process.
The RBF-RL algorithm is trained based on a 50-episode
cycle before the trained policy is used to re-train the MLP-
AE state representation. During the MLP-AE re-training,
15000 sets of electrode outputs are used which consists of
40% of randomly selected old data and 60% of new data
collected using the trained policy. The process is repeated
until convergence occurs. In total, about 7800 sets of state-
action pairs have been collected and used in the training
of 300 episodes. By implementing the proposed RBF-RL
algorithm, the training process and results are illustrated in
Fig. 10. Both the cumulative reward (with a moving average
of 25 episodes) and the norm of network weight vector ||w||
converge after about 95 episodes.

To benchmark the performance of the proposed approach,
three other frameworks are used for comparison: (i) RBF-
RL without MLP-AE, (ii) Tabular Q-learning with MLP-AE
(TQ-RL with MLP-AE), and (iii) RBF-RL using pressure
output instead of electrode outputs (P only). All these
frameworks are trained with the same configurations. Fig.
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Fig. 10. Training process and results of the proposed framework



with MLP-AE (proposed)
without MLP-AE
n

Cumulative Reward

. . . n
0 50 100 150 200 250 300
Episode

Cumulative Reward

proposed | -
TQ-RL
Pony |

0 50 100 150 200 250 300
Episode

Fig. 11. Average cumulative rewards using different frameworks: (a) with
MLP-AE vs. without MLP-AE; (b) comparisons of different frameworks

11 shows the comparisons on the average cumulative reward
among different frameworks during the training process.

In Fig. 11(a), although the cumulative reward tends to be
converged within the 300 episodes while the MLP-AE is not
used, its convergence speed is slower than the integration of
the MLP-AE and RBF-RL. The MLP-AE reduces the state
space that goes into the RBF-RL, without which it may result
in a much larger network requiring longer training time. The
convergence of the integrated framework suggests that the
MLP-AE succinctly and effectively compresses the states.

In Fig. 11(b), it can be found that the TQ-RL can also help
the system to find the optimal policy in about 250 episodes.
However, the convergence speed of using this traditional
tabular method is much slower than the proposed framework.
This can be mainly due to the curse of dimensionality [34].
Also, it is obvious that the framework using pressure output
cannot achieve the maximum cumulative reward within the
specified maximum episode. The comparison results between
the framework only using pressure output and the one using
tactile electrode outputs reveal that the tactile sensing infor-
mation can help the system to learn the optimal policy in a
shorter time. This is reasonable because the tactile electrodes
can capture richer touch information comprehensively which
is helpful in selecting the correct actions while the pressure
output is just a kind of single point force measurement.

In summary, the proposed framework is effective and
efficient, the strength of which lies in its ability to compactly
represent both the high-dimensional tactile observations and
the Q-function using neural networks.

2) Validation and Comparison: To further validate the
effectiveness of the proposed framework, the learned frame-
work is benchmarked in the real-time experiments. In the
practical manipulation task, the end-effector is required to
move forward to reach the target position surrounded by the
plastic balls. Note that the task is considered as failed if
the pressure output of the tactile sensor exceeds a common
threshold or the end-effector is unable to reach the target
position within an acceptable range. For the purposed frame-
work, the trained RBF network are used and refined, and the
robot action is selected based on the following criteria: a; =
argmax,, Q(sg,a; 6~ ). Moreover, two other motion planning
and control strategies are used for comparison purpose: (i)
naive policy: a straightly forward movement that moves the
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Fig. 12. Pressure comparison results
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Fig. 13. Sequence of the manipulation task using the proposed framework

end-effector to the target position, and (ii) impedance control:
the built-in impedance control mode of the robot is activated.

Ten tests are conducted using the proposed framework and
the two other strategies, respectively. Fig. 12 shows a boxplot
of the pressure applying on the tactile sensor with different
approaches during the target reaching task.

It is obvious that the naive policy performs the worst
because it forces its way to the target in the shortest path. In
only 3 out of 10 tests, the end-effector managed to reach the
target position. The failures are all due to pressure exceeding
threshold. On the other hand, the impedance control and the
proposed framework can reach the target position with higher
success rates which are 60% for the impedance control and
100% for the proposed framework, respectively. In terms of
the pressure readings shown in the boxplot, the proposed
framework shows the smallest median pressure value as well
as pressure variance, and achieves the best performance.

Thus, it can be concluded that the proposed framework
is effective for the manipulation in the densely cluttered
environment. Fig. 13 shows the sequence of manoeuvring the
end-effector to reach the target position (behind the yellow
plastic ball) in the cluttered environment using the proposed
framework. With the proposed framework, the robotic end-
effector can be guided to reach the given target efficiently
with less resistance.

V. CONCLUSIONS

In this paper, a bioinspired motion planning and control
framework based on tactile feedback is proposed and de-
veloped for the target reaching task by a robot manipulator
in a cluttered environment. A two-stage machine learning
approach for tactile feature extraction using an MLP-AE
and manipulator motion planning leveraging on RBF-RL is
designed. Experiments to verify and validate the proposed
framework have been conducted with the scenario of a 7-DoF
robot manipulator moving its end-effector to reach the given
target through a ball pit. The results show that the proposed
framework can effectively achieve the manipulation task with
better performance than the conventional methods. However,
more complicated cluttered scene is not tested in this paper.
Some possible extension works that can be investigated in
the future include enhancing the system robustness for more
complex environments, and improving the perception-action
loop in the control system.
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