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On Time-Synchronized Stability and Control
Dongyu Li, Haoyong Yu, Keng Peng Tee, Yan Wu, Shuzhi Sam Ge, and Tong Heng Lee

Abstract—Previous research on finite-time control focuses on
forcing a system state (vector) to converge within a certain
time moment, regardless of how each state element converges.
In the present work, we introduce a control problem with
unique finite/fixed-time stability considerations, namely time-
synchronized stability, where at the same time, all the system
state elements converge to the origin, and fixed-time-synchronized
stability, where the upper bound of the synchronized settling
time is invariant with any initial state. Accordingly, sufficient
conditions for (fixed-) time-synchronized stability are presented.
On the basis of these formulations of the time-synchronized
convergence property, the classical sign function, and also a norm-
normalized sign function, are first revisited. Then in terms of
this notion of time-synchronized stability, we investigate their
differences with applications in control system design for first-
order systems (to illustrate the key concepts and outcomes),
paying special attention to their convergence performance. It
is found that while both these sign functions contribute to
system stability, nevertheless an important result can be drawn
that norm-normalized sign functions help a system to addition-
ally achieve time-synchronized stability. Further, we propose a
fixed-time-synchronized sliding-mode controller for second-order
systems; and we also consider the important related matters
of singularity avoidance there. Finally, numerical simulations
are conducted to present the (fixed-) time-synchronized features
attained; and further explorations of the merits of the proposed
(fixed-) time-synchronized stability are described.

Index Terms—Time-synchronized convergence, sliding-mode
control, Lyapunov analysis.

I. INTRODUCTION

DUE to the great potential for high-precision performance
of finite-time control design, it has become an active

development topic with wide applications in various interest-
ing areas, such as attitude stabilization of spacecraft [1]–[3],
trajectory tracking of robotic manipulators [4]–[6], cooperative
control of multi-agent systems [7]–[10], state estimation of
dynamical systems [11]–[13], etc. In general, finite-time stabi-
lization guarantees finite-time convergence of the system state
[14], where more specifically, before a certain time moment,
all the system state elements arrive at the origin. Further, it can
be noted that such related fixed-time stability was proposed in
[15] to predefine guaranteed settling time of the closed-loop
system, regardless of the initial conditions. For some classes
of practical systems, unfortunately, standalone finite- or fixed-
time convergence is not enough during certain operations,
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in which the control system (with diversified subsystems) is
expected to accomplish multiple actions synchronously (the
state elements converge to desired values at the same time).
For example, the finger joints of a robotic hand may be
required to reach the desired angles synchronously in order to
grasp an object firmly. For multi-agent missions, the networked
systems are generally required to likewise synchronously reach
a target (e.g., cooperative missile attacks [16]).

Motivated by the above observation, we investigate unique
types of finite/fixed-time stability formulations — time-
synchronized stability (TSS) and fixed-time-synchronized sta-
bility (FTSS), where all the system state elements converge to
the origin at the same time, with the estimation of the synchro-
nized settling time variant/invariant with the initial state. It is
noteworthy that TSS has already been conceptualized in our
previous work [17]. Nevertheless, the specific definitions, the
stability formulations, and the corresponding control design
based on TSS are not yet explored in detail. Further, the
concept of FTSS has not been touched on.

To solve this problem, the properties of sign functions
are first explored that are widely utilized in control system
design, industrial electronics, and signal processing [18]–[27].
Especially for sliding-mode control, the sign function provides
robustness against matched disturbances [28]–[30], and it is
one of the most commonly used mathematical tools to design
a finite/fixed-time control law. In particular, two distinct types
of multi-variable sign functions, i.e., the classical sign function
and the norm-normalized (NN) sign function are revisited,
as well as their influence on the control effect. This latter
function is also described and called as the unit vector in
[31]–[33], but there, while some examples of effectiveness
were shown, the detailed different contributions of the two
functions to the system stability and convergence were then
not deeply explored nor fully developed. The classical sign
function is usually referred to as the sign function or the
signum function, extracting the sign of any real numbers.
The NN sign function gets its name because, while generally
rather similar to the classical sign function, it additionally
utilizes the normalization of the input vector (and thus yielding
inherently different and rather important properties). In the
literature, most existing results on control systems use the
classical sign function to design a controller for single-input
single-output systems, and the NN sign function for multi-
input multi-output systems. However, despite the abundant
results on the NN sign function (e.g., in [31]–[35], the NN sign
functions are employed to simplify the sliding-mode control
design for multi-input and Lagrangian systems), (fixed-) time-
synchronized stability on the basis of the NN sign function
have not been explored.

Our aim here is to show the different features of the two sign
functions in the following sense: (i) in terms of control design,
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both functions can be applied to design general controllers,
such as finite/fixed-time control, sliding-mode control, etc;
and (ii) the NN sign function has superior performance,
guiding the closed-loop system to additionally achieve these
newer notions and outcomes of TSS or FTSS. The key novel
embedded attribute lies in that, considering an input vector
of dimension n, n individual scalars are generated by clas-
sical sign functions, while NN sign functions incorporate the
normalization computation of the input vector with its norm.
From a qualitative aspect, each output element of NN sign
functions contains information of the whole input vector, while
the classical sign function does not. Therefore, noting this key
embedded attribute, it is thus not unexpected that the more
stringent outcomes of (F)TSS are generally not possible to be
expected from the classical sign function; but now certainly
evidently possible from the NN sign function because it is
tightly coupled together with all the elements of its input
vector.

This approach holds the following contributions. Firstly,
(fixed-) time-synchronized control problems are presented, and
we formally introduce definitions of TSS and FTSS. A system
is called time-synchronized stable (abbreviated also as TSS) if
all the closed-loop system state elements reach the equilibrium
at the same time; and called fixed-time-synchronized stable
(FTSS) if it is TSS and additionally with the synchronized
settling time’s upper bound independent of the initial state.
Consequently, these notions of TSS and FTSS could be treated
as special kinds of finite/fixed-time stability as they already
meet the requirements of finite/fixed-time stability. This also
provides a theoretical foundation for a very recent approach on
(fixed-) time-synchronized consensus [36], where consensus is
achieved by network systems at the same time.

Secondly, to further articulate the time-synchronized conver-
gence property, the concept of ratio persistence is defined. The
solution of a system is ratio persistent if the ratio of the closed-
loop state elements is time-invariant in forward time. The ratio
persistent property serves as the basis of achievement of time-
synchronized convergence. This property is also capable of
enhancing the system performance by yielding a shorter and
smoother output trajectory, e.g., in the 2- and 3-dimensional
space, the trajectory of a ratio persistent system state is a
straight line. Given these developments and characterizations
of ratio persistence and the NN sign function, we propose,
based on Lyapunov functions, two relevant Lyapunov-type
theorems for TSS and FTSS, respectively. These theorems
provide sufficient conditions to prove TSS and FTSS, and offer
a constructive guide to a suitable (fixed-) time-synchronized
controller, i.e., “Fixed/Finite-Time Stability” + “Ratio Persis-
tence” ⇒ “(Fixed-) Time-Synchronized Stability”. The present
paper is the first regular publication of these Lyapunov stability
results with corresponding proofs.

Thirdly, according to the introduced Lyapunov conditions,
we design a time-synchronized control (TSC) law for a class
of first-order systems as a starting point to reveal the nature of
TSS, in comparison with a finite-time controller. The merit of
the NN sign function compared with the classical sign function
is also elaborated. Next, based on FTSS, we propose (di-
rectly) a non-singular fixed-time-synchronized control (FTSC)

algorithm. Actually, as a pertinent aside, it can be noted
that for finite/fixed-time control using classical sign functions,
the singularity-avoidance issue was addressed with a variety
of techniques (refer to the elegant non-singular controllers
in [37]–[45]). Here, in virtue of the NN sign function, a
series of control laws for first-order and for second-order
systems have been proposed and proved to be (fixed-) time-
synchronized stable. Moreover, the controller proposed here
for second-order systems is directly singularity-free; and this
extension is certainly non-trivial, as the otherwise state of the
art modification schemes (as mentioned above) which would
have been required to avoid a singularity (when only the
classical sign function is employed) cannot be directly applied.

Lastly (but certainly not least), this approach is also of
practical contributions, as the performance of many real-world
systems depends largely on how and when the state of the
closed-loop system converges. For example, we usually require
all the state elements of artificial satellites, unmanned aerial
vehicles, space manipulators, etc., to reach a desired state
at the same time during their re-pointing/maneuver/on-orbit
operations.

The remainder of this approach can be summarized as
follows. In Section II, the properties of the classical sign
function and the NN sign function are briefly introduced. In
Section III, TSS and FTSS, as well as their related Lyapunov
conditions are described, based on which a series of controllers
are designed for first-order systems and second-order systems.
Simulations are presented in Section IV to showcase the merit
of (F)TSC. Pertinent conclusions are provided in Section V.

Notations: Let R denote the set of real numbers, and
In ∈ Rn×n the n-dimensional identity matrix. Let λmax (·)
and λmin (·) denote the maximum and minimum eigenvalues
of a matrix, respectively. Denote diag (x1, . . . , xn) ∈ Rn×n as
the diagonal matrix with diagonal entries x1, . . . , xn. Denote
‖·‖ as the L2-norm of a vector.

II. PRELIMINARIES AND PROBLEM FORMULATIONS

Before further proceeding, we list the following abbrevia-
tions in Table I.

TABLE I
ABBREVIATIONS

Abbreviations Meanings
NN Norm-Normalized
(F)TSC (Fixed-) Time-Synchronized Control
(F)TSS (Fixed-) Time-Synchronized Stability/Stable

A. Sign Functions

The classical sign function signc and the NN sign function
signn are first introduced

signc (x)
∆
= [sgn (x1) , sgn (x2) , . . . , sgn (xn)]

T
, (1)

signn (x)
∆
=

{ x
‖x‖ , x 6= 0,

0, x = 0,
(2)
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where x = [x1, x2, . . . , xn]
T ∈ Rn, and

sgn (xi)
∆
=

 +1, xi > 0,
0, xi = 0,
−1, xi < 0,

(3)

with i = 1, 2, . . . , n.
In particular, signc (x) maps all vectors from the same

orthant into one vector, while signn (x) maps all vectors into
the directions of themselves. An illustrated example is shown
in Fig. 1, where the red arrow denotes signn (x) and the blue
arrow signc (x).
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(b) 3-D example

Fig. 1. signc (x) and signn (x) in 2-D and 3-D.

We now give the relation between signc (x) and signn (x).
(While these properties have been previously addressed in
[17], we provide them here for completeness.)

i signc (x) = signn (x) iff x = 0 or x contains only one
non-zero element while the others (if n ≥ 2) are all zero.
Otherwise, signc (x) 6= signn (x).

ii ‖signc (x)‖ ≤
√
n, while ‖signn (x)‖ = 1 if x 6= 0.

iii xT signc (x) =
∑n
i=1 |xi| = ‖x‖1, while xT signn (x) =

‖x‖2/‖x‖ = ‖x‖.
iv Consider a positive (negative) definite matrix A ∈ Rn×n.

For x 6= 0, xTA signn (x) is positive (negative) definite
as xTA signn (x) = xTA x/‖x‖, while in general,
xTA signc (x) does not hold the same property.

Further, based on signc and signn, the following continuous
modifications are proposed, offering more freedom to control
design due to an adjustable power α,

sigαc (x) = [signc (x1) |x1|α, . . . , signc (xn) |xn|α]
T
, (4)

sigαn (x) = ‖x‖αsignn (x) , (5)

where sigαc (x) and sigαn (x) are continuous, and α is usually
selected as a positive constant.

We next provide some useful properties of sigαn (x).
Lemma 1: [36] For any real vector x ∈ Rn,

∂

∂x
‖x‖α+1

= (α+ 1) ‖x‖α−1
x, (6)

d

dt
‖x‖α+1

= (α+ 1) ‖x‖α−1
xT ẋ, (7)

∂

∂x
sign(x)

α+1
= α‖x‖α−2xxT + ‖x‖αIn. (8)

Lemma 2: [36] Consider a vector

z = [zT1 , z
T
2 , . . . , z

T
N ]T ∈ RNn, zi ∈ Rn, i = 1, 2, ..., N,

where N and n are positive integers. Each element of
[signn(z1)

T
, signn(z2)

T
, . . . , signn(zN )

T
]T is greater than or

equal to the corresponding element of signn (z). For conve-
nience, we denote it as[

signn(z1)
T
, signn(z2)

T
, . . . , signn(zN )

T
]T
≥̇signn (z) .

Lemma 3: For a vector x ∈ Rn, and constants α > 0 and
β > 0,

‖x‖α−βxxT sigαn (x) = sig2α−β+2
n (x). (9)

Proof: From (5),

‖x‖α−βxxT sigαn (x) = ‖x‖2α−βxxT signn (x) . (10)

By element-wisely analyzing xxT signn (x) in the case of x =
0 and the case of x 6= 0, we have

xxT signn (x) = sig2
n(x). (11)

Taking (11) into (10) results in (9).

B. Other Technical Lemmas

The system dynamics is given as follows,

ẋ = f (x) , f (0) = 0, x(0) = x0, (12)

where considering an open neighborhood D0 ⊆ Rn of the
origin, f : D0 → Rn is continuous, and there exist a unique
solution for any initial state of the system (12) in forward time.

Next, we introduce well-established results on finite/fixed-
time stability.

Lemma 4: [46] Considering the system (12), for any real
numbers c > 0 and α ∈ (0, 1), the origin of a Lyapunov
function V (x) is finite-time stable if

V̇ (x) + cV α(x) ≤ 0, (13)

where the settling time is estimated by

T (x0) ≤ V 1−α(x0)

c (1− α)
, (14)

with the initial value x0.
Lemma 5: [15] The system (12) is fixed-time stable, if for

a radially unbounded Lyapunov function V (x), we have

V̇ (x) ≤ − (αV p(x) + βV g(x))
χ
, (15)

where α, β, p, g and χ are positive constants, satisfying pχ < 1
and gχ > 1. The settling time T is bounded as

T ≤ 1

αχ(1− pχ)
+

1

βχ(gχ− 1)
. (16)

III. MAIN RESULTS

In this section, TSS and FTSS with relevant Lyapunov-like
theorems are proposed, and a series of controllers are properly
designed for first-order systems and second-order systems to
achieve the proposed stability results.
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A. Time-Synchronized Stability

We here formally define TSS.
Definition 1: (Time-Synchronized Stability). The equilibrium

of the system (12) is time-synchronized stable if

i. it is finite-time stable;
ii. for an open neighborhood N0 ⊆ D0 of the origin, there

exists a function T : N0\{0} → (0,∞), called the
synchronized settling-time function, such that for ∀x0 ∈
N0\{0} and i ∈ {1, 2, . . . , n}, we have x (t) ∈ N0,
∀t ∈ [0,∞), and for xi(0) 6= 0,

xi (t) 6= 0, lim
t↑T (x0)

xi (t) = 0, ∀t ∈ [0, T (x0)), (17)

where T (x0) is the synchronized settling time.

The equilibrium of the system (12) is globally time-
synchronized stable if it is time-synchronized stable with
N0 = D0 = Rn.

According to Definition 1, TSS is a unique type of finite-
time stability, as TSS already meets its definition and require-
ment. Note that there exist several slightly different definitions
of finite-time stability (e.g., definitions in [46], [47]), which is
not the focus of this paper. Intuitively, one of the techniques
to achieve TSS is to guarantee that: (i) the system (12) is
finite-time stable; and (ii) during the convergence, the ratio
of each pair of the state elements is a constant. Since all the
state elements converge to the equilibrium simultaneously, the
above two conditions sufficiently lead to TSS, which further
motivates the following notion.

Definition 2: (Ratio Persistence). The closed-loop state x of
the system (12) is ratio persistent if for x 6= 0, we have

x

‖x‖
= ζ

f (x)

‖f (x)‖
, (18)

where ζ is the direction of ratio persistence, which can be
either 1 or −1.

The condition of ratio persistence seems to be strict, while in
fact, numerous control laws in the literature have the potential
to force the closed-loop system to achieve the ratio persistence,
especially for those where a unit vector is utilized, to name a
few, the control design in [31], [33]–[35], [48]–[50].

From Definition 2, a ratio persistent state x satisfies ẋ =
κ (x)x, where the function κ : N0\{0} → R is defined as

κ (x) = ζ−1 ‖f (x)‖
‖x‖

. (19)

From (18), we know κ (x) 6= 0 when x 6= 0. Next, for ∀xi (t),
xj (t) 6= 0, i, j ∈ {1, 2, . . . , n} , i 6= j, we have

d

dt

(
xi (t)

xj (t)

)
=
ẋi (t)xj (t)− xi (t) ẋj (t)

x2
j (t)

. (20)

Taking ẋi = κ (x)xi and ẋj = κ (x)xj into (20), we can get

d

dt

(
xi (t)

xj (t)

)
= 0. (21)

Therefore, we know for ∀xi (t), xj (t) 6= 0, i, j ∈
{1, 2, . . . , n}, i 6= j, xi (t) /xj (t) = cij , where cij =
xi (0) /xj (0) is a non-zero constant.

Therefore, according to the above discussion, one sufficient
condition of TSS is that the system (12) is finite-time stable
and the closed-loop state x is ratio persistent. In addition, in
the 2- and 3-dimensional space, if the system state is ratio
persistent, its trajectory is a straight line, taking the forms
x1 = c12x2, (x ∈ R2) and x1 = c12x2 = c12c23x3, (x ∈
R3), respectively. This means that the output generated by a
ratio persistent system in R2 or R3, is the shortest trajectory
between any initial state and the equilibrium.

We are now ready to present the fundamental result of TSS,
which will be applied throughout the paper.

Theorem 1: Considering a Lyapunov function V (x), the
origin of system (12) is TSS, with the synchronized settling
time

T (x0) ≤ V 1−α(x0)

c (1− α)
, (22)

if the following conditions hold:

i. There exist constants c > 0 and α ∈ (0, 1), such that

V̇ (x) + cV α (x) ≤ 0. (23)

ii. The state x is ratio persistent.

Proof: Noticing (23) and using Lemma 4, the equilibrium
of (12) is clearly finite-time stable with the settling time as in
(22).

By contradiction, the rest of the proof is constructed.
Assume that at least two state elements xi and xj reach the
equilibrium at different time instants Ti and Tj . Without loss
of generality, let xj be the last one to arrive, i.e., Tj > Ti.
According to the property of ratio persistence, we have

lim
t→T−

i

d

dt

(
xi (t)

xj (t)

)
= 0, lim

t→T−
i

xi (t) = cij lim
t→T−

i

xj (t) , (24)

where cij is a constant value. Since the ratio of each pair
of the state elements is kept from the beginning, we have
cij = xi (0) /xj (0). Further, since the element xi arrives at
the origin at Ti, it yields

lim
t→T−

i

xi (t) = 0⇒ kij lim
t→T−

i

xj (t) = 0. (25)

Due to the continuity of the system (12), we have xj (Ti) = 0,
where the contradiction occurs because xj reaches zero at Tj
not at Ti. Thus, each pair of the state elements must reach the
origin at exactly the same time instant. The proof ends here.

Theorem 1 not only provides a sufficient condition to prove
TSS but also offers a simple guide to TSC design. This will
be detailed in the following sections.

B. Time-Synchronized Control Design

In this subsection, for a comprehensive comparison of TSS
and finite-time stability, based on Theorem 1, the NN sign
function (5) and the classical sign function (4) are utilized to
design a TSC law and a finite-time control law, respectively.
Simple first-order affine dynamics in Rn is considered,

ẋ = f (x) + b (x)u, (26)
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where x = [x1, x2, . . . , xn]
T ∈ Rn denotes the state vector,

u ∈ Rn the control input, and f (x) ∈ Rn and b (x) ∈ Rn×n
(det (b (x)) 6= 0) the known parts.

We now propose a TSC law u2, and introduce a finite-time
control law u1 for comparison

u1 =− b−1 (x) (sigαc (x) + f (x)) , (27)

u2 =− b−1 (x) (sigαn (x) + f (x)) , (28)

where α is defined as 0 < α = α1/α2 < 1 with positive odd
integers α1 and α2.

Theorem 2: Under control laws (27) and (28), i.e., u = u1

and u = u2, the system system (26) is finite-time stable and
TSS, respectively. In addition, under the controller (28), the
closed-loop state x is ratio persistent.

Proof: Consider a Lyapunov function V1 = xTx. Taking
the derivative of V1, based on the finite-time control law
(27), we have V̇1 = −2xT sigαc (x) ≤ −2V

α+1
2

1 . According
to Lemma 4, we can derive the settling time of the finite-time
convergence T1 (x0) ≤ V

1−α
2

1 (x0) / (1− α) .
Next, for the system under the TSC law (28), we consider

a second Lyapunov function V2 = xTx. Accordingly, its time
derivative reads V̇2 = −2xT sigαn (x) = −2V

α+1
2

2 . On the other
hand, clearly, x is ratio persistent. According to Theorem
1, it proves that the closed-loop system is TSS, and the
synchronized settling time is T2 (x0) = V

1−α
2

2 (x0) / (1− α) .
and the proof ends here.

C. Fixed-Time-Synchronized Stability

In this subsection, FTSS is defined, which not only holds
the time-synchronized convergence property but is able to
additionally obtain an estimation of the synchronized settling
time with disregard for the initial state.

Definition 3: (Fixed-Time-Synchronized Stability). The equi-
librium of the system (12) is fixed-time-synchronized stable if

i. it is globally time-synchronized stable in the sense of
Definition 1;

ii. the upper bound of the synchronized settling time T (x0)
is independent of any initial system state, i.e., for ∀x0,
we have T (x0) ≤ Tm, where Tm is a positive constant.

According to Definition 1, FTSS is thus within the scope of
fixed-time stability. Next, based on Definition 3, the relevant
Lyapunov-type result of FTSS is next addressed.

Theorem 3: Considering a Lyapunov function V (x), the
origin of system (12) is FTSS, with the synchronized settling
time

T (x0) ≤ 1

αχ(1− pχ)
+

1

βk(gχ− 1)
, (29)

if the following conditions hold:
i. There exist positive constants α, β, p, g, and χ satisfying
pχ < 1 and gχ > 1, such that

V̇ (x) ≤ −(αV p(x) + βV g(x))χ. (30)

ii. The state x is ratio persistent.
Proof: Given (30), according to Lemma 5, the system (12)

is fixed-time stable with the settling time bounded as in (29).

Since x is ratio persistent, the FTSS can be further proved
following the contradiction in the proof of Theorem 1.

D. Fixed-Time-Synchronized Control Design

In this subsection, to demonstrate FTSS and to consider a
class of more practical systems, an FTSC law is designed for
second-order systems. Before moving forward, a useful lemma
is first proposed.

Lemma 6: Consider the following system dynamics

ẋ = −αsigpn (x)− βsiggn (x) , (31)

where x ∈ Rn is the state vector, α, β, p and g are positive
constants, satisfying 0 < p = p∗1/p

∗
2 < 1 and 1 < g = g∗1/g

∗
2 ,

with positive odd integers p∗1, p∗2, g∗1 and g∗2 . The closed-loop
system is ratio persistent and FTSS with the synchronized
settling time

Th ≤
2

1−p
2

α (1− p)
+

2
1−g
2

β (g − 1)
. (32)

Proof: Consider a Lyapunov function Vh = 1
2x

Tx. Taking
(31) into the derivative of Vh, yields

Vh =− αxT sigpn(x)− βqT siggn(x)

=− 2
1+p
2 αV

1+p
2

h − 2
1+g
2 βV

1+g
2

h . (33)

It can be verified that x is ratio persistent. According to
Theorem 3, we know that the system (31) is FTSS with the
synchronized settling time as shown in (32).

As we will present in what follows, the first-order dynamics
(31) and its corresponding results given in Lemma 6 actually
serve as a basis of the FTSC for more practical system
dynamics.

Consider the following second-order affine system

q̈ = f (q, q̇) + b (q, q̇)u, (34)

where q ∈ Rn and q̇ ∈ Rn, respectively, denote the general
position and velocity vectors, u ∈ Rn the control input, and
f (q, q̇) ∈ Rn and b (q, q̇) ∈ Rn×n (det (b (q, q̇)) 6= 0) are the
known parts. The second-order dynamics (34) can be rewritten
as an Euler-Lagrange system for applications to mechanical
systems, where q stands for the vector of the Lagrangian
coordinates.

We design a sliding-mode manifold

s = q̇ + α1sigp1n (q) + β1sigg1n (q) , (35)

where α1 and β1 are positive constants, and p1 and g1 are
defined as 0 < p1 = p∗1/p

∗
2 < 1 and g1 = g∗1/g

∗
2 > 1, with

positive odd integers p∗1, p∗2, g∗1 and g∗2 .
The following FTSC law is then proposed

u =− b−1 (q, q̇) (α2sigp2n (s) + β2sigg2n (s)

+ρ1qq
T q̇ + ρ2q̇ + f (q, q̇)

)
, (36)

where α2, β2, p2 and g2 are positive constants, satisfying 0 <
p2 = p∗3/p

∗
4 < 1 and g2 = g∗3/g

∗
4 > 1, with positive odd
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integers p∗3, p∗4, g∗3 and g∗4 , and variables ρ1 and ρ2 take the
forms

ρ1 =α1 (p1 − 1) ‖q‖p1−3
+ β1 (g1 − 1) ‖q‖g1−3

, (37)

ρ2 =α1‖q‖p1−1
+ β1‖q‖g1−1

. (38)

In light of the controller (36), we propose the following
theorem.

Theorem 4: Considering the second-order affine system
governed by (34), under the FTSC law (36), the closed-loop
system is FTSS. The sliding-mode variable s is ratio persistent,
while the closed-loop system state q is ratio persistent on the
sliding surface s = 0.

Proof: Consider a Lyapunov function Vh1 = 1
2s
T s.

Taking the controller (36) into the derivative of Vh1, we have

V̇h1 = sT
(
f (q, q̇) + b (q, q̇)u+ ρ1qq

T q̇ + ρ2q̇
)

= −α2s
T sigp2n (s)− β2s

T sigg2n (s)

= −2
1+p2

2 α2V
1+p2

2

h1 − 2
1+g2

2 β2V
1+g2

2

h1 . (41)

Next, taking (36) into the derivative of (35), we can verify that
s is ratio persistent. Based on Theorem 3, the sliding mode
variable s is FTSS with the synchronized settling time

Th1 ≤
2

1−p2
2

α2 (1− p2)
+

2
1−g2

2

β2 (g2 − 1)
. (42)

Further, on the sliding manifold s = 0, we have

q̇ = −α1sigp1n (q)− β1sigg1n (q) . (43)

Based on Lemma 6, after the system state arrives at the
sliding surface, the closed-loop state q is ratio persistent and
FTSS with the synchronized settling time

Th2 ≤
2

1−p1
2

α1 (1− p1)
+

2
1−g1

2

β1 (g1 − 1)
. (44)

The total synchronized settling time of the state q takes the
form Thm ≤ Th1+Th2, which concludes the proof by showing
that under the controller (36), the system (34) is FTSS.

The FTSC law (36), however, has negative powers −3 and
−1 in ρ1 and ρ2 (see (37) and (38)), causing a possible
singularity problem at the point q = 0. To avoid the singularity,
we propose a switching sliding mode manifold as

s = q̇ + ss. (45)

The switching law ss and its derivative have the forms as
in (39) and (40), where ε is a small positive constant, the
auxiliary variable s∗ takes the form

s∗ = q̇ + α1sigp1n (q) + β1sigg1n (q), (46)

constants l1 and l2 take the forms

l1 =α1

(
4

3
− p1

3

)
‖ε‖p1−1

+β1

(
4

3
− g1

3

)
‖ε‖g1−1

, (47)

l2 =α1

(
p1

3
− 1

3

)
‖ε‖p1−4

+β1

(
g1

3
− 1

3

)
‖ε‖g1−4

, (48)

and the corresponding powers are redefined as

1

2
< p1 = p∗1/p

∗
2 < 1, 1 < g1 = p∗1/p

∗
2 < 4, (49)

with positive odd integers p∗1, p∗2, g∗1 and g∗2 (the rationality of
the value ranges of the parameters p1 and g1 will be detailed
in Appendixes A and B).

It could be verified that the forms of l1 and l2 ensure the
continuity of the switching algorithm ss (39) and ṡs (40).

Based on the proposed sliding manifold (45), we rewrite the
control law (36) as follows,

u=−b−1(q,q̇)(α2sigp2n (s)+β2sigg2n (s)+ṡs+f (q,q̇)) , (50)

where the corresponding powers are defined as 0 < p2 =
p∗3/p

∗
4 < 1 and g2 = p∗3/p

∗
4 > 1 with positive odd integers p∗3,

p∗4, g∗3 and g∗4 .
The main result of this subsection is proposed.
Theorem 5: Considering a second-order system governed by

(34), under the singularity-free FTSC law (50), the closed-loop
system is FTSS. The sliding-mode variable s is ratio persistent,
while the closed-loop system state q is ratio persistent on the
sliding surface s = 0.

Proof: Consider a Lyapunov function Vs1 = 1
2s
T s. Using

the control law (50), the derivative of Vs1 can be written as

V̇s1 = −2
1+p2

2 α2V
1+p2

2
s1 − 2

1+g2
2 β2V

1+g2
2

s1 . (51)

Again, it can be verified that the variable s is ratio persistent.
Based on Theorem 3, we know s is FTSS. The corresponding
synchronized settling time takes the form

Ts1 ≤
2

1−p2
2

α2 (1− p2)
+

2
1−g2

2

β2 (g2 − 1)
. (52)

After the system state q reaches the sliding manifold s = 0,
we have q̇ = −α1sigp1n (q) − β1sigg1n (q) , which leads to the
ratio persistence of the state q. According to Lemma 6, we
know that the closed-loop state is FTSS with the synchronized
settling time

Ts2 ≤
2

1−p1
2

α1 (1− p1)
+

2
1−g1

2

β1 (g1 − 1)
, (53)

which makes the total setting time of the closed-loop system
state q bounded by Tsm ≤ Ts1 + Ts2, and this concludes the
proof.

Next, the analysis of the singularity problem is given,
followed by some further discussion of the stability analysis
of the second-order dynamics (34) under the FTSC law (50).

Lemma 7: Using the proposed control law (50) with the
switching sliding manifold (45), the singularity problem can
be avoided.

Proof: For details, refer to Appendix A.
Actually, in light of the switching law (39), ss = l1q +

l2sig4
n(q) only takes place when s∗ 6= 0, ‖q‖ ≤ ε. We here

further discuss the system convergence property before the
sliding manifold s converges to the origin (0 ≤ t < Ts1)
while ‖q‖ ≤ ε.

Lemma 8: In the case of s∗ 6= 0, ‖q‖ ≤ ε, under the control
law (50) and the switching law (39), the closed-loop system
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ss =

{
α1sigp1n (q) + β1sigg1n (q), if s∗ = 0 or s∗ 6= 0, ‖q‖ > ε,
l1q + l2sig4

n(q), if s∗ 6= 0, ‖q‖ ≤ ε, (39)

ṡs =

{
ρ1qq

T q̇ + ρ2q̇, if s∗ = 0 or s∗ 6= 0, ‖q‖ > ε,

l1q̇ + 3l2 ‖q‖ qqT q̇ + l2‖q‖3q̇, if s∗ 6= 0, ‖q‖ ≤ ε, (40)

(34), viewed as a system with the state q and the input s, is
input-to-state stable.

Proof: For details, refer to Appendix B.
Remark 1: By choosing a small enough ε, the state x will

converge along the terminal sliding manifold rather than the
general sliding manifold to guarantee finite time convergence,
i.e., the case of s∗ 6= 0, ‖x‖ ≤ ε as in Lemma 8 will not
occur during actual convergence. The rationale is similar to
the discussion in Remark 4 from [39], which is omitted here.

IV. ILLUSTRATIVE EXAMPLES

In this section, we first examine the TSC law as a starting
point to show the properties of TSS. Then, to showcase the
higher performance of FTSC, a series of simulations are
given under different conditions, where interesting properties
brought by FTSS are further revealed.

A. Numerical Results of the TSC Law

For the first-order system (26) introduced in Subsection
III-B, we here evaluate the performance of the TSC law (28)
in comparison with the finite-time controller (27). We consider
an extremely simple case for the system (26), where f (x) = 0
and b (x) = I3, leading to a single integrator in R3, ẋ = u.

Relative simulation examples are given in Figs. 2-3. The
simulation parameters are chosen as x0 = [1,−3, 6]

T and α =
1/3. As shown in Figs. 2(a) and 2(b), both control laws (27)
and (28) can guarantee that the system state x converges to the
origin in finite time. In Fig. 2(a), three state elements converge
to the equilibrium separately. It takes x1 a much longer time to
converge as its initial value is far from zero. On the contrary,
under the control law (28), TSS is revealed in Fig. 2(b), where
x1, x2 and x3 arrive at the origin synchronously.

The 3-dimensional trajectories under the finite-time con-
troller (27) and the TSC law (28) are shown in Fig. 3. It
suggests that TSS helps the system generate a smoother and
shorter output, as according to Theorem 2 and Definition 2,
the trajectory of the closed-loop system under TSC law (28)
is ratio persistent, being a (shortest) straight line in the 3-
dimensional space.

B. Numerical Results of the FTSC Law

In this subsection, we take the attitude stabilization of
a rigid spacecraft as an example, as some highly critical
phases of space missions have very strict requirements for the
convergence performance of the spacecraft.

First, the spacecraft attitude dynamics are briefly recalled.

1) Spacecraft Attitude Dynamics: We define the cross-
product skew symmetric matrix z× associated with a vector
z = (z1, z2, z3)T ∈ R3 as

z× =

 0 −z3 z2

z3 0 −z1

−z2 z1 0

 . (54)

Then, utilizing the modified Rodrigues parameters (MRPs)
[51], the attitude dynamics with respect to an inertial frame
can be represented as

σ̇ = G (σ)ω, (55)

Jω̇ = −ω×Jω + τ, (56)

where σ
def
= [σ1, σ2, σ3]

T
= tan (Φ/4) e ∈ R3 denotes the

MRPs, Φ ∈ R denotes Euler angle, e ∈ R3 the Euler axis,
ω

def
= [ω1, ω2, ω3]

T ∈ R3 the angular velocity, J ∈ R3×3 the
inertia matrix, τ ∈ R3 the control torque, and G (σ) ∈ R3×3

is given by

G (σ) =
1

2

(
1− σTσ

2
I3 + σ× + σσT

)
. (57)

Then, (55) and (56) can be rewritten as an Euler-Lagrange
equation, that is,

M (σ) σ̈ + C (σ, σ̇) σ̇ = u (t) , (58)

where the relevant parameters are rewritten as

M (σ) =G−T (σ) JG−1 (σ) , (59)

C (σ, σ̇) =−G−TJG−1ĠG−1 −G−T (Jω)
×
G−1, (60)

u =G−T (σ) τ. (61)

Therefore, according to the Euler-Lagrange system (58),
we can rewrite the FTSC law (50) for the spacecraft attitude
stabilization as

u=−M(σ) (α2sigp2n (s)+β2sigg2n (s)+ṡs)+C (σ,σ̇) σ̇. (62)

2) Fixed-Time Control Law for Comparison: In what fol-
lows, to illustrate the features of FTSS, we apply the FTSC law
(62) to the spacecraft attitude stabilization. Moreover, to offer
a better comparison, we here introduce a fixed-time control
(FTC) law for the Euler-Lagrange systems.

Lemma 9: Considering the system governed by (58), under
the following FTC law:

ū=−M(σ)(α2sigp2c (s̄)+β2sigg2c (s̄)+ ˙̄ss)+C (σ,σ̇) σ̇. (63)

The sliding manifold s̄ = σ̇ + s̄s, the trigger sliding-mode
variable s̄∗ = σ̇+α1sigp1c (σ) +β1sigg1c (σ), and the switching
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Fig. 2. System state x: (a) performance of the finite-time control law (27); (b) performance of the TSC law (28).
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Fig. 3. Comparison of the trajectories under control laws (27) and (28).

law take the forms

s̄s,i=

 α1sigp1
c

(σi) + β1sigg1c (σi),
if s̄∗ = 0,
or s̄∗ 6= 0, |σi| > ε,

l3σi + l4sig2
c(σi), if s̄∗ 6= 0, |σi| ≤ ε,

˙̄ss,i=

 α1p1|σi|p1−1
σ̇i+β1g1|σi|g1−1

σ̇i,
if s̄∗ = 0,
or s̄∗ 6=0, |σi|>ε,

l3σ̇ + l4 |σi| σ̇i, if s̄∗ 6=0, |σi|≤ε,

where σi, s̄s,i and ˙̄ss,i denote the ith element of σ, s̄s and ˙̄ss,
i = 1, 2, ..., n. l3 and l4 take the following forms to guarantee
the continuity of s̄s and ˙̄ss:

l3 = (2− p1)α1ε
p1−1 + (2− g1)β1ε

g1−1, (64)

l4 = (p1 − 1)α1ε
p1−2 + (g1 − 1)β1ε

g1−2. (65)

The closed-loop system state converges to the origin in fixed
time.

Proof: The proof is omitted due to page limit, which can
be given following the procedure in [39].

3) Control Performance of FTSC and FTC: In Table II, the
simulation parameters for the FTSC law (62) and the FTC law
(63) are provided, where the control parameters for both the
controllers are identical for fairness of comparison.

Using the FTC law (63) and the FTSC law (62), the cor-
responding closed-loop system states are respectively shown

TABLE II
SIMULATION PARAMETERS: CASE 1

Parameters Values Parameters Values
α1 0.1 p1 0.65
α2 0.05 p2 0.65
β1 0.1 g1 1.1
β2 0.05 g2 1.1
σ0 [0.06,−0.03, 0.01]T ε 0.0001
J [12, 0.4, 0.2; 0.4, 10, 0.6; 0.2, 0.6, 11] (kg·m2)

in Figs. 4(a) and 4(b). In Fig. 4(a), it explicitly indicates that
under the FTC law (63), three state elements σ1, σ2 and σ3

converge to the origin separately at different time instants,
while as shown in Fig. 4(b), the FTSC law (62) synchronously
drives all the state elements to the equilibrium. For greater
clarity, the norms of the state elements governed by two
control laws are given in Figs. 5(a) and 5(b). In Fig. 5(a),
the state element σ3 arrive at the origin first at t = 16s, and
then the other two elements catch up at t = 22s and t = 26s.
On the contrary, all the state elements in Fig. 5(b), reach the
origin synchronously at t = 26s.

Moreover, in Fig. 6, it demonstrates that the state trajectory
generated by the FTSC law (62) is ratio persistent, making the
whole trajectory shorter compared with that governed by the
FTC law (63), as it is a straight line between the start point
and the end point.

Specifically, the property of ratio persistence is further
shown in Fig. 7(a), where we have

σ1 (t)

σ2 (t)
=
σ1 (0)

σ2 (0)
= −2, (66)

σ1 (t)

σ3 (t)
=
σ1 (0)

σ3 (0)
= 6, (67)

σ2 (t)

σ3 (t)
=
σ2 (0)

σ3 (0)
= −3. (68)

It also evidently approves declared FTSS under the FTSC
law (62). Finally, the relevant control inputs of the FTSC
law (62) are given in Fig. 7(b). One may wonders why the
ratios in Fig. 7(a) do not run into a singularity 0/0 after
the state elements converge to the origin. It is because the
simulation software has a limit on the numerical resolution
(e.g., by default, MATLAB R© uses 16 digits of precision).
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Fig. 4. System state σ: (a) performance of the FTC law (63); (b) performance of the FTSC law (62).
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Fig. 5. Norm of the system state σ: (a) performance of the FTC law (63); (b) performance of the FTSC law (62).

Fig. 6. Comparison of the attitude trajectories under the FTC law (63) and the
FTSC law (62). (Please note that these trajectories are not the real movements
of the spacecraft attitude, as modified Rodrigues parameters are applied in the
system dynamics.)

Thus, although σi and σj can reach the origin theoretically,
they might be respectively represented as σi = 6 ∗ 10−15 and
σj = 1 ∗ 10−15 in the simulation software, making their ratio
remains to be a constant with the value of 6.

Next, for a more comprehensive comparison, we choose
another set of parameters for simulation as shown in Table
III. Basically, the power parameters p1, p2, g1 and g2 are

TABLE III
SIMULATION PARAMETERS: CASE 2

Parameters Values Parameters Values
α1 0.1 p1 0.7
α2 0.05 p2 0.7
β1 0.1 g1 1.2
β2 0.05 g2 1.2
σ0 [0.06,−0.03, 0.01]T ε 0.0001
J [12, 0.4, 0.2; 0.4, 10, 0.6; 0.2, 0.6, 11] (kg·m2)

re-selected (as they are the crucial ones to affect the perfor-
mance), while the other parameters remain the same.

Here, we directly plot the norms of the state elements
under two controllers in Figs. 8(a) and 8(b). Again, Fig. 8(a)
shows that the time-synchronized convergence property cannot
be expected from the FTC law (63). The main reason is
that the classical sign function sigc decouples a vector into
different scalar while the NN sign function sign incorporates
the normalization of a vector with its specified norm. Due to
the same reason, in Fig. 8(b), FTSS is successfully achieved
at t = 20s. It is additionally noticeable that there exist
overshoots in Fig. 8(a), which inevitably degrades the system
performance, while no such deterioration can be found in Fig.
8(b).

Compared with the simulation results in the first case
(see Figs. 5(a) and 5(b)), the difference between the control
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Fig. 7. Performance of the FTSC law (62): (a) ratio of the elements of the system state σ; (b) control inputs.
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Fig. 8. Norm of the system state σ: (a) performance of the FTC law (63); (b) performance of the FTSC law (62).
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Fig. 9. Performance of the FTSC law (62) with an impulsive disturbance: (a) System state σ; (b) Norm of the system state σ.
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Fig. 10. Ratio of the state elements using FTSC (62) under an impulsive
disturbance.

performances of the two controllers become more obvious in
Figs. 8(a) and 8(b). For example, the trajectories of the state
elements in Figs. 5(a) and 5(b) are similar to a certain degree
(although their times of arrival to the origin are different),
while in Figs. 8(a) and 8(b), the differences of trajectories
are more distinct. It is conjectured empirically from numerous
simulations that a decrease in p1 and p2 or an increase in g1

and g2 leads to a greater difference between the performances
of the FTSC law (62) and the FTC law (63).

So far, we have presented two simulation cases to reveal the
nature of FTSS. Moreover, compared with the FTC law (63),
the property of ratio persistence has been clearly illustrated.
Note that all the current results assume that there exists
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no external disturbance. In real-world applications, however,
disturbances are inevitable and sometimes unpredictable.

Therefore, to further evaluate the FTSC law (62) under
disturbances, additional simulations are conducted, where all
the control parameters are chosen the same as shown in Table
II. We here consider that the system suffers from an external
impulsive disturbance that acts on the state element σ3 at
t = 10s. The relevant numerical results are presented in
Figs. 9-10. It is shown in Figs. 9(a) and 9(b) that despite the
external disturbance, FTSS is still achieved successfully. The
rationale lies in that although σ3 drifts significantly because
of the disturbance, the FTSC law (62) continues generating a
proper control input, intending to preserve the ratio persistent
property of the current system state. Thus in Fig. 10, after the
impulsive disturbance, the ratio of each affected pair of the
state elements quickly converged to a new constant.

V. CONCLUSION

This paper has shown unique and deeper insight into the
established finite-time stability, by defining a (fixed-) time-
synchronized control problem with (fixed-) time-synchronized
stability, and formulating Lyapunov stability results. The no-
tion of ratio persistence has been defined to facilitate the
achievement of such a (fixed-) time-synchronized convergence
property. A series of control laws have been proposed for
first-order and for second-order systems to achieve (fixed-)
time-synchronized stability. Furthermore, the singularity-free
control has been designed for second-order systems. A notable
challenge lies in that some state of the art techniques subjected
to the classical sign function, cannot be directly applied to such
(fixed-) time-synchronized control design.

It is found here that, while both of the classical sign function
and the norm-normalized sign function help to stabilize a sys-
tem, the norm-normalized sign function additionally empowers
the system to achieve (fixed-) time-synchronized stability. It
is noteworthy that this norm-normalized sign function is of
theoretical importance and has wide applicability not only in
control system design but also in fields of engineering and
various other sciences, which possibly endows this approach
an extended contribution. Nevertheless, clearly various impor-
tant directions remain open, e.g., while we have elaborated
on how to extend this approach from first-order systems to
second-order systems, there are certainly indeed yet more
complex systems with difficult practical issues which should
be considered in future work.
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APPENDIX A
PROOF OF LEMMA 7

The proof can be given by the following three cases.

Case 1: ‖q‖ > ε. It is trivial that there is no singularity
problem.

Case 2: ‖q‖ ≤ ε, s∗ = 0. According to the switching law
(39), we have

q̇ = −α1sigp1n (q)− β1sigg1n (q) . (69)

Substituting (69) into the control law (50) yields,

u =− b−1 (q, q̇) (α2sigp2n (s) + β2sigg2n (s)

+ Q+ f (q, q̇)) , (70)

where we define

Q =ρ1qq
Tα1sigp1n (q) + ρ1qq

Tβ1sigg1n (q)

+ ρ2α1sigp1n (q) + ρ2β1sigg1n (q). (71)

Substituting ρ1 and ρ2 (see (37)-(38)) into (71), we have

Q =α1 (p1 − 1) ‖q‖p1−3
qqTα1sigp1n (q)

+ β1 (g1 − 1) ‖q‖g1−3
qqTα1sigp1n (q)

+ α1 (p1 − 1) ‖q‖p1−3
qqTβ1sigg1n (q)

+ β1 (g1 − 1) ‖q‖g1−3
qqTβ1sigg1n (q)

+
(
α1‖q‖p1−1

+ β1‖q‖g1−1
)
α1sigp1n (q)

+
(
α1‖q‖p1−1

+ β1‖q‖g1−1
)
β1sigg1n (q). (72)

Based on Lemma 3, we know

qqT sigp1n (q) = sigp1+2
n (q) . (73)

Taking (73) into (72), it reads

Q=α2
1(p1−1)sig2p1−1

n (q)+α1β1(g1−1)sigp1+g1−1
n (q)

+α1β1(p1−1)sigp1+g1−1
n (q)+β2

1(g1−1)sig2g1−1
n (q)

+α2
1sig2p1−1

n (q) + α1β1sigp1+g1−1
n (q)

+α1β1sigp1+g1−1
n (q) + β2

1sig2g1−1
n (q)

=α2
1p1sig2p1−1

n (q) + β2
1g1sig2g1−1

n (q)

+α1β1 (p1+g1) sigp1+g1−1
n (q) . (74)

Since we know 1
2 < p1 < 1 and g1 > 1, the singularity

can thus be avoided in (74) as 2p1 − 1 > 0, 2g1 − 1 > 0, and
p1 + g1 − 1 > 0.

Case 3: ‖q‖ ≤ ε, s∗ 6= 0, the sliding manifold (45) be-
comes a general one without any singularity by the switching
law (39). Therefore, according to the above discussion, the
singularity problem can be avoided. This finishes the proof. �

APPENDIX B
PROOF OF LEMMA 8

Before moving on, relevant necessary results on input-to-
state stability are first recalled.

Definition 4: [52] Consider a general nonlinear system

ẋ = f (x, u) , f (0, 0) = 0, x(0) = x0, (75)

where f : Rn × Rm → Rn is continuously differentiable.
The system (75) is input-to-state stable (ISS) if there exist a
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KL-function γ1 and a K-function γ2 such that, for each input
u ∈ L∞ and each x0 ∈ Rn, it holds that

|x (t, x0, u)| ≤ γ1 (|x0| , t) + γ2 (‖u‖), ∀t ≥ 0. (76)

Definition 5: [52] A smooth function V : Rn → R+ is an
ISS Lyapunov function if there exist functions α1, α2 ∈ K∞
and α3, ` ∈ K, such that for ∀x ∈ Rn, u ∈ Rm, the following
conditions hold

α1(|x|) 6 V (x) 6 α2(|x|), (77)
|x| > `(|u|)⇒ Lf(x,u)V (x) 6 −α3(|x|), (78)

where ` is the Lyapunov gain.
Lemma 10: [52] The system (75) is ISS iff it there exists

an ISS Lyapunov function for it.
The proof of Lemma 8 can then be addressed as follows.
In the case of s∗ 6= 0, ‖q‖ ≤ ε, according to the switching

law (39), we have

q̇ = −l1q − l2sig4
n(q) + s. (79)

Consider a Lyapunov function

VISS =
1

2
qT q. (80)

Its time derivative takes the form

V̇ISS =− l1qT q − l2‖q‖3qT q + qT s

=−
(
l1 + l2‖q‖3

)
qT q + qT s. (81)

Denoting L = l1 + l2‖q‖3, based on (47) and (48), we have

L =α1

(
4

3
− p1

3

)
‖ε‖p1−1

+ α1

(
p1

3
− 1

3

)
‖ε‖p1−4‖q‖3

+β1

(
4

3
− g1

3

)
‖ε‖g1−1

+β1

(
g1

3
− 1

3

)
‖ε‖g1−4‖q‖3.

Noticing 1 < g1 < 4 and ‖q‖ ≤ ε, we thus can get

L ≥α1

(
4

3
− p1

3

)
‖ε‖p1−1

+ α1

(
p1

3
− 1

3

)
‖ε‖p1−1

+ β1

(
4

3
− g1

3

)
‖ε‖g1−1

. (82)

Define a positive constant

λ = α1‖ε‖p1−1
+β1

(
4

3
− g1

3

)
‖ε‖g1−1

. (83)

Therefore, (81) becomes

V̇ISS ≤ −λqT q + qT s

= −λ (1− θ) qT q −
(
λθqT q − qT s

)
, (84)

where θ ∈ (0, 1).
Then, for λθqT q − qT s > 0, we have

V̇ISS ≤ −λ (1− θ) qT q. (85)

By taking

κ1 (δ) = λ (1− θ) ‖δ‖2 (86)

κ2 (δ) =
‖δ‖
λθ

, (87)

where the variable δ ∈ Rn, we obtain that

V̇ISS ≤ −κ1 (q) , (88)

if ‖q‖ ≥ κ2 (s). This concludes the proof by showing that,
according to Definition 5 and Lemma 10, the closed-loop
system is ISS. The corresponding ISS-Lyapunov function is
VISS (q) = 1

2q
T q, with the Lyapunov gain κ2 (s).
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