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Abstract— Robotic systems are increasingly required not only
to generate precise motions to complete their tasks but also
to handle the interactions with the environment or human.
Significantly, soft interaction brings great challenges on the
force control due to the nonlinear, viscoelastic and inhomo-
geneous properties of the soft environment. In this paper, a
robust impedance control scheme utilizing integral backstep-
ping technology and integral terminal sliding mode control is
proposed to achieve force tracking for an ultrasonic motor-
actuated end-effector in a soft environment. In particular, the
steady-state performance of the target impedance while in
contact with soft environment is derived and analyzed with
the nonlinear Hunt-Crossley model. Finally, the dynamic force
tracking performance of the proposed control scheme is verified
via several experiments.

I. INTRODUCTION

Robotic systems have been increasingly used in many
industrial and medical applications, where they are designed
to work for various tasks under different environments.
Significantly, many applications are required to carry out
the contact operation between the end-effector and the en-
vironment or human, such as grasping, polishing, assembly
[1], [2], microgripper [3], cell injection [4], surgery [5], and
human-robot interaction [6], etc.

During the contact operation, the interaction force needs
to be regulated carefully by force control to avoid unde-
sirable effects (such as damage to environment) and ensure
successful task performance [7], [8]. Various force feedback
control schemes are presented in [9]–[11], which show
good effectiveness of applying force controller in different
applications. These explicit force controllers can achieve fast
response and low force overshoot when the contact model is
established accurately. However, it is noted that the motion
of the actuation system is unconstrained and uncontrolled for
pure force controllers.

Alternatively, the interaction force can be regulated by the
target impedance model through establishing a virtual mass-
spring-damper dynamics with contact force and position
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errors [12]. To track the desired interaction force trajectory,
a force tracking impedance control was proposed in [13].
In [14], it is demonstrated that impedance control achieves
better performances than explicit force control, especially for
microscale applications. It is worth noting that the contact
environment is generally assumed to be rigid and described
by a simple elastic or mass-spring-damper system. The
rigid environment can be suitable for the applications such
as polishing [15], electro-hydraulic force loading system
[16], microassembly [17]. However, for applications that the
systems are required to be in contact with soft environment,
e.g., human tissues to surgical devices, new challenges on
force tracking arise because the soft environment is generally
viscoelastic, nonlinear and inhomogeneous [18].

To describe the dynamics between the end-effector and
the soft environment, many linear compliant contact models
have been developed and used [8], [19]. Moreover, the
experimental results reported in [18], [20] show that the
soft materials such as human tissues/organs can be more
accurately modeled by the Hunt-Crossley (HC) nonlinear
model. Nevertheless, only few studies used this nonlinear
model in the force controller design [21].

Another concern about force tracking in a soft envi-
ronment is the robustness to unintended impacts stemmed
from the environment and the end-effector. Many approaches
have been developed to handle the robustness problems
for position tracking [22]–[24]. Among these, sliding mode
control (SMC) provides effective and robust performance by
taking the undesired impacts as external disturbances. To
regulate interaction force and remain sufficiently robust, a
robust sliding mode impedance controller without knowing
the exact values of system parameters is proposed in [25].
However, the finite-time convergence of SMC that are vital
to tracking performance is not considered. Also, few studies
explored on the impedance control in a soft environment.

In this paper, an ultrasonic motor-actuated (USM-actuated)
end-effector is developed and used in investigating the robust
impedance control for force tracking in a soft environment,
where a thin soft membrane is employed to represent the soft
environment. Apart from the soft environment, the inherent
hysteresis nonlinearity and the produced friction in the USM
can deteriorate the system performance significantly [26]–
[28]. Motivated by these key issues, an integral backstepping
impedance control with integral terminal sliding mode (BC-
ITSMC) based on the HC model is proposed to achieve high
force tracking precision and strong robustness to complex
hysteresis and friction nonlinearities, disturbances, and varied
properties of different soft environments.



The rest of this paper is organized as follows. The end-
effector and its model are introduced in Section II. The
impedance model and steady-state error analysis in soft
environment based on the HC model are presented in Sec-
tion III. Section IV gives the detailed design of the proposed
controller. Experimental setup and results are presented in
Section V. Finally, Section VI draws the conclusions.

II. ULTRASONIC MOTOR-ACTUATED END-EFFECTOR

The USM-actuated end-effector equipped on to a manip-
ulator (KUKA LBR iiwa 14) is shown in Fig. 1, which is
mainly designed for carrying out precise surgical operation
(e.g., automatic injection and implant insertion [5]), as well
as micromanipulation. There are two key components in the
end-effector that make it functional, one is the USM (PI-
M663, Physik Instrumente) with the resolution of 0.3 µm to
move the tool and the other is a force sensor (FS1500NS,
Honeywell) with the sensitivity of 0.12 mV/g to measure the
interaction force between the tool and environment.

The USM is a piezoelectric actuator, which dominant part
can be modeled as a second-order system [26]. With the con-
sideration of the hysteresis, friction and other disturbances,
the USM model is expressed as

mẍ+ cẋ+ kx+ fr + fh + fd = bu− fe, (1)

where m, c, k are the effective mass, damping and stiffness
coefficients, respectively. x is the measured position. ẋ and
ẍ are the velocity and acceleration, respectively. fe is the
measured interaction force between the device and environ-
ment. The input voltage to the USM is denoted as u through
a electromechanical ratio b of the system. fr and fh are the
friction and hysteresis nonlinearities, respectively, fd is the
unknown disturbances, e.g., heat and external disturbances.

A diagram showing the contact model between the USM-
actuated end-effector and the environment is depicted in Fig.
2, where ke, be and n are the parameters of the environment,
and xe is the equilibrium position of the environment.
Assumption 1. The time derivative of fc, fh, fd are bounded
and satisfy the following conditions: |ḟc| ≤ Θc, |ḟh| ≤
Θh, |ḟd| ≤ Θd, where Θc, Θh, Θd are positive constants.

Because the actual parameters of the system are difficult
to obtain, the nominal parameters are defined as mn = m−

USM-actuated end-effector
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Fig. 1. USM-actuated end-effector with manipulator
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Fig. 2. Model of USM-actuated end-effector during contact

∆m, cn = c−∆c, kn = k −∆k, where ∆m, ∆c, ∆k are
the model uncertainties.
Assumption 2. The time derivative of the model uncertain-
ties Ξ = ∆mẍ + ∆cẋ + ∆kx are bounded by |Ξ̇| ≤ ΘΞ,
where ΘΞ is a positive constant.

The total disturbance is defined as ft = ∆mẍ + ∆bẋ +
∆kx+ fc + fh + fed and its time derivative is bounded by
|ḟt| ≤ Θft = ΘΞ +Θc+Θh+Θd, where Θft is an unknown
positive constant.

Based on the above assumptions, (1) is simplified as

mnẍ+ bnẋ+ knx+ ft = bu− fe. (2)

III. IMPEDANCE MODEL AND STEADY-STATE ERROR
ANALYSIS IN SOFT ENVIRONMENT

To regulate the position and force simultaneously, the
initial impedance model is formulated in terms of the position
error and interaction force [12]. However, for many applica-
tions such as robotic surgery and soft grasping, the force
tracking is also required to achieve the desired response.
Thus, the target impedance model including both position
and force errors is employed in this paper, which is given by

miëp + ciėp + kiep = −kfef , (3)

where mi, bi, ki are the desired inertia, damping, stiffness
impedance parameters, respectively. kf is the parameter to
regulate the weighting of force error. The term ep = x − x̄
is the position error, and ef = fe− f̄ is the interaction force
error, where x̄ and f̄ are the desired position and force tra-
jectories, respectively. With the virtual mass-spring-damper
relationship (3), the position and force can be controlled at
the same time via selecting suitable impedance parameters.

As shown in Fig. 2, the HC nonlinear model used to
describe the soft environment is expressed as

fe = ke(x− xe)n + ce(x− xe)nẋ, (4)

where xe is the equilibrium position of the environment in
absence of interaction force. ke(x−xe)n−1 and ce(x−xe)n
are position-dependent stiffness and damping.

Take the HC model (4) into (3), we can obtain that

miëp + ciėp + kiep = −kf [ke(x− xe)n

+ ce(x− xe)nẋ− f̄ ].
(5)

It is clear that the equation is nonlinear and thus difficult
to be solved. To analyze the steady-steady performance,
the HC model is firstly linearized [21]. Assuming that the
corresponding equilibrium position reaches at xs for the



desired force f̄ , by employing Taylor series of x and ẋ at
xs, we can derive the following approximation

fe(x, ẋ) ≈fe(xs, ẋs) +
∂fe
∂x

∣∣∣∣
xs,ẋs

[(x− xe)− (xs − xe)]

+
∂fe
∂ẋ

∣∣∣∣
xs,ẋs

[(ẋ− ẋe)− (ẋs − ẋe)].

(6)
Furthermore, xs can be calculated by (4) at the steady-

state as f = ke(xs − xe)n, which results in

xs = xe +
n

√
f̄

ke
. (7)

Take ẋs = 0 and (4) into consideration, the partial derivative
terms ∂fe/∂x and ∂fe/∂ẋ at xs, ẋs can be calculated as

∂fe
∂x

∣∣∣∣
xs,ẋs

=nke(xs − xe)n−1 + nce(xs − xn)n−1ẋs

=nke(xs − xe)n−1 = nke(
f̄

ke
)

n−1
n = k̃e,

(8)

∂fe
∂ẋ

∣∣∣∣
xs,ẋs

= ce(xs − xe)n = ce
f̄

ke
= c̃e. (9)

By combining (8) and (9) with (6), we have

fe(x, ẋ) = fd + k̃e(x− xe)− k̃e(xs − xe) + c̃eẋ. (10)

Note that k̃e(xs − xe) = nf̄ holds after appropriate simpli-
fications on (7) and (8), so the linearized HC model is

fe =k̃e(x− xe) + c̃eẋ+ (1− n)f̄ . (11)

Hence, the dynamics for soft interaction with (3) becomes

miëp + ciėp + kiep = −kf [k̃e(x− xe)
+ c̃eẋ+ (1− n)f̄ − f̄ ].

(12)

For the steady-state response, we have ẍd = 0, ẋd = 0,
ẍe = 0, ẋe = 0, ẍ = 0, and ẋ = 0. Hence, (12) becomes

kiep =− kf k̃eep + kf [nf̄ + k̃e(xe − x̄)]. (13)

Thus, the steady-state position and force errors are

epss ≈
kf

ki + kf k̃e
[nf̄ + k̃e(xe − x̄)]

efss ≈−
ki
kf
epss = − ki

ki + kf k̃e
[nf̄ + k̃e(xe − x̄)].

(14)

To achieve zero force error, one method is to track the
generated virtual reference calculated by x̄ = xe+nf̄/k̃e. It
is evident that the parameters of HC model ke, be, n, and the
equilibrium position need to be known exactly. The complex-
ity of the control system will increase significantly although
the online identification of HC model has been proposed
in [18], [29]. Moreover, there are still some limits that are
posed on these methods. Alternatively, it can be observed that
the zero force steady-state error can be achieved by setting
ki = 0 which avoids the need of HC model identification.
Remark 1. In this paper, the conditions of zero force
tracking error are deduced based on the nonlinear HC model.

Moreover, this study focus on the force tracking in a soft
environment and hence ki = 0 is chosen in this paper to
simplify the controller implementation. Thus, the modified
target impedance model is expressed as

miëp + ciėp = −kfef , (15)

which is employed in the following controller design.

IV. ROBUST IMPEDANCE CONTROL SCHEME

Fig. 3 shows the block diagram of the proposed impedance
control scheme. It employs the impedance model as well as
the adaptive control and sliding mode control techniques.

A. Impedance Error-based Auxiliary Variable

Based on (15), the impedance error is given by

ε = miëp + ciėp + kfef , (16)

and an augmented impedance error is defined by

ε = ëp + Ciėp +Kfef , (17)

where Bi = ci
mi
,Kf =

kf
mi

.
By designing a new auxiliary variable z, (17) becomes

ε = ż + Ciz, (18)

where the auxiliary variable z is given by z = ėp + el, with
the filtered force error defined as ėl +Biel = Kfef .

Therefore, z → 0 will lead to ε→ 0, and thus the control
objective now is to minimize the auxiliary variable z.

B. Integral Backstepping Force Controller with Integral Ter-
minal Sliding Function

To accommodate the unknown disturbance like friction
and hysteresis in the USM-actuated end-effector, a sliding
mode-based controller is developed. A novel integral ter-
minal sliding manifold based on z is proposed to achieve
finite-time convergence and better steady-state performance,

σ =

∫
[z + k1ż + k2sig(z)ρ] dt, (19)

where sig(·)ρ = | · |ρsign(·), k1 > 0, k2 > 0, and 1 < ρ < 2.
Remarkably, the integral action is in corporated into the

sliding function to improve the steady-state performance.
This sliding function will converge in a finite time Ts, and

Ts ≤
k1

1− ρ
ln
|z(0)|1−ρ + k2

k2
, (20)

Adaptive law Control law End-effector
Contact 

environment

Impedance 

model

Auxiliary 

variable

Sliding 

manifold

Virtual 

variable

Impedance control scheme

Fig. 3. Block diagram of the proposed impedance control scheme



where z(0) is the initial value of z.
The time derivative of (19) is deduced as

σ̇ = k1ż + z + k2sig(z)ρ. (21)

Based on (19) and (21), the second-order auxiliary differ-
ential equations based on the integral terminal sliding mode
surface is constructed as

σ1 =σ =

∫
[z + k1ż + k2sig(z)ρ] dt, σ̇1 = σ2

σ̇2 =
d

dt
[k1ż + z + k2sig(z)ρ]

(22)

Next, the backstepping method is employed to obtain
the proposed control law. To improve the steady-state per-
formance, the integral action is augmented in the control
scheme. The integral error of σ1 is defined as

χ1 =

∫
σ1 dt. (23)

To drive the sliding function and its integration to zero, the
Lyapunov function candidate V1 is chosen as

V1 =
1

2
σ2

1 +
λ1

2
χ2

1, (24)

where λ1 is a positive parameter. Then V̇1 is calculated as

V̇1 = σ1σ̇1 + λ1χ1σ1 = σ1σ2 + λ1χ1σ1, (25)

which can be rendered negative, i.e., V̇1 < 0 if we use φ as
virtual signal defined by

φ = σd2 = −ξ1σ1 − λ1χ1, (26)

where σd2 is the desired control force of σ2, and ξ1 is a
positive parameter. The error between σ2 and σd2 is given by

ε = σ2 − σd2 = σ2 − φ, (27)

and we can also obtain that

σ2 = ε+ φ = −ξ1σ1 − λ1χ1 + ε. (28)

Take (28) into (25), yields

V̇1 = σ1σ2 + λ1χ1σ1 = −ξ1σ2
1 + σ1ε. (29)

Then, the integral error of ε is given by χ2 =
∫
ε dt.

To make the error ε and its integration χ2 converge to
zero, the following Lyapunov function is proposed,

V2 = V1 +
1

2
ε2 +

λ2

2
χ2

2, (30)

where λ2 is a position parameter. Then V̇2 is calculated as

V̇2 = −ξ1σ2
1 + σ1ε+ λ2χ2ε+ ε(σ̇2 − φ̇). (31)

Theorem 1. For the system (2), the virtual variable z will
converge to zero and achieve the target impedance (15) if
the following control law and the integral terminal sliding
function (19) are applied,

u =
1

T
[bnẋ+ knx+ fe −

∫
K̂ssign(ε) dt] +

mn

T
(ẍd − ėl)

− mn

Tk1
[z + k2sig(z)ρ − φ+

∫
(σ1 + ξ2ε+ λ2χ2) dt],

(32)

with the update law

˙̂
Ks = γ

k1

mn
|ε|, (33)

where γ, ξ2 are both positive parameters.
Proof of Theorem 1. The stability of the proposed controller
is proven by the final Lyapunov function defined by

V3 = V2 +
1

2γ
K̃2
s , (34)

where K̃s = K̂s−Ks is the estimated error of Ks that is to
update the upper bound of ft, and Ks meets the condition
|Ks| > Θft . It is evident that (34) is continuous and non-
negative, then V̇3 is given by

V̇3 =− ξ1σ2
1 + σ1ε+ λ2χ2ε+ ε(σ̇2 − φ̇) + γ−1K̃s

˙̂
Ks.

(35)
According to (22), we can obtain that

σ̇2 =
d

dt
[k1(ẍ− ẍd + ėl) + z + k2sig(z)ρ]. (36)

Then, based on the model (2), it is calculated that

ẍ =
1

mn
(bu− cnẋn − kx− fe − ft). (37)

Combine (35) and (37), it yields

σ̇2 =
d

dt
[
k1

mn
(bu− cnẋ− knx− fe − ft)

− k1(ẍd − ėl) + z + k2sig(z)ρ].
(38)

By substituting (38) and (32) into (35), we have

V̇3 =− ξ1σ2
1 − ξ2ε2 − ε k1

mn
[K̂ssign(ε) + ḟt]

+ γ−1(K̂s −Ks)
˙̂
Ks.

(39)

Take the adaptive law (33) into consideration yields

V̇3 = −ξ1σ2
1 − ξ2ε2 − k1

mn
(Ks|ε|+ ḟtε) < 0, (40)

with |Ks| > Θft . The above result demonstrates that σ and
z will converge to zero in a finite time according to (20), and
reach the desired impedance (15). The globally asymptotic
stability is guaranteed by the backstepping method. �

C. Overall Control Law

To further avoid the estimated parameter K̂s to be too big
with the integral action in (33), a projection operator [30]
is employed. With the lower and upper bounds of Ks, i,e,
Ks,max, and Ks,min the adaptive law is modified as

˙̂
Ks = ProjK̂s

(
γ

mn
|σ|), (41)

where

ProjK̂s
(·) =


0, if K̂s = Ks,max and · > 0

0, if K̂s = Ks,min and · < 0

·, otherwise.



Moreover, to simplify the controller implementation and
avoid the derivative of signal, el can be calculated through
filtering ef by a transfer function Gf (s) defined by

Gf (s) =
Kf

s+ Ci
, (42)

and ėl in (23) is obtained by ėl = Kfef −Biel.
Therefore, the overall control law is given by

u =
1

b
[cnẋ+ knx+ fe −

∫
K̂ssign(ε) dt] +

mn

b

(ẍd −Kfef + Ciel)−
mn

bk1
[z + k2sig(z)ρ − φ+∫

(σ1 + ξ2ε+ λ2χ2) dt], (43)

with the adaptive law expressed by (41).
Remark 2. In this paper, an adaptive control law is also
incorporated into the proposed control scheme to estimate
the generally unknown upper bound of the total disturbance.
Remark 3. The proposed BCITSMC generates the control
signal directly based on the impedance error. The extra
inner-loop for position control to track the virtual position
trajectory is not needed while using the proposed BCITSMC.
Remark 4. The control law (43) is deduced by setting ki = 0
based on the analysis with the HC model so that precision
force tracking can be achieved even in a soft environment.

V. EXPERIMENTS, RESULTS AND DISCUSSIONS

To verify the effectiveness of the proposed method, an
experimental system setup is built as shown in Fig. 4. Besides
the USM-actuated end-effector, a soft Polyethylene (PE) film
is utilized as the soft object to be contacted. The overall
impedance control scheme is implemented by the dSPACE
DS-1104 control card with the sampling time of 1 ms.

A. Effects of Impedance Parameter ki
To evaluate the effects of ki, the references are set as

0.25Hz, 0.5 Hz, 1 Hz periodic S-curves with the tracking
amplitude of 0.1 N, respectively. For the first condition, the
impedance parameter is chosen as a fine-tuned ki = 3947.61,
and the second condition is with ki = 0 based on the
analysis in Section III. The results are performed during the
soft interaction between the end-effector and one-layer soft
membrane. The force tracking errors are plotted in Fig. 5 and
the force root-mean-square error (RMSE, erms) is shown
in Table I. It is obvious that both the two conditions can
stabilize the interaction with the soft membrane. For the 0.25

Soft membrane
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Tool
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Fig. 4. Experimental system setup
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Fig. 5. Force tracking errors of the proposed controller with different ki

TABLE I
RMSE OF THE PROPOSED CONTROLLER WITH DIFFERENT ki

Statistical Errors (N) 0.25 Hz 0.5 Hz 1 Hz
with ki erms 0.0023 0.0033 0.0039
without ki erms 0.0016 0.0016 0.0017

Hz S-curve, the erms is 0.0023 N with ki while it is 0.0016
N without ki. As the frequency increases, the erms increases
to 0.0039 N with ki, and erms at 0.0017 N is achieved by
the proposed method with ki = 0. It should be noted that
only the force tracking is concentrated and thus the zero fore
error can be achieved by setting ki = 0. In spite of that, the
position of the USM is still constrained according to (14)
due to the implementation of impedance model. The above
results demonstrate that better force tracking performance
can be achieved by the proposed BCITSMC with ki = 0.

B. Comparative Results with Different Force Trajectories

To highlight the performance of the proposed control
scheme, another three force tracking controllers are devel-
oped as benchmarks:

(i) Proportional-integral-derivative (PID)-based impedance
control (PIDC): through the target impedance (3), a PID
controller shown in (44) is designed to track the generated
reference, similar to the method in [31],

up = −Kpep −Ki

∫
ep dt−Kpėp. (44)

(ii) Sliding mode-based impedance control (SMCC) [25],

u =
1

b
[cnẋ+ knx+ fe − ksσ − dsign(σ)] +

mn

b
(ẍd − ξ̇),

σ =ėp + ξ, ξ̇ = −αξ + kpep + kv ėp + kfef . (45)

(iii) Integral terminal sliding mode-based impedance con-
trol (ITSMC),

u =
1

b
[cẋ+ kx+ fe −Kssign(σ)] +

m

b
(ẍd − Λėp − ėl)

− m

bk1
[z + k2sig(z)ρ], (46)

with the adaptive law (41).
Next, the tracking performance for the dynamic force is

tested and compared. The references are set as 0.25 Hz, 0.5



Hz, 1 Hz periodic S-curves with the tracking amplitude of
0.1 N, respectively and one-layer soft membrane is used to
verify the controller performance on tracking varying force.
ki is chosen as ki = 3947.61 for PIDC and SMCC while ki
is set to zero for ITSMC and the proposed BCITSMC.

Table II lists the statistical results of the force tracking
errors and Fig. 6 shows the comparative results of different
controllers at different frequencies of 0.25 Hz, 0.5 Hz, 1 Hz.

For the lowest tracking speed at 0.25 Hz, PIDC and SMCC
achieve the similar erms. However, the maximum absolute
error (MaxAE) emax of PIDC is smaller than the emax
of SMCC. Therefore, the performance of PIDC is better
than that of SMCC. It should be noted that the largest
error of PIDC occurs during rising phase of S-curve due
to the limited position bandwidth of PID controller. On the
contrary, the emax of SMCC occurs when the S-curve is
rising or falling because the impact of friction is significant.
The variation of dynamic motion direction brings a suddenly
changing disturbance to the system, but the SMCC cannot
remove it effectively. For ITSMC, both the erms and emax
show that the performance is improved significantly by using
the integral terminal sliding surface. Furthermore, with the
proposed controller via backstepping technology, the erms
and emax improve 40.74% and 21.21%, respectively, in
comparison with ITSMC.

For the 0.5 Hz S-curve shown in Fig. 6, although the erms
of SMCC is smaller than that of PIDC, the emax is still
larger, which gets the same conclusion from the tracking
results of 0.25 Hz S-curve. For ITSMC, the performance is
nearly the same as 0.25 Hz S-curve. The performance of
BCITSMC remains the best.

For the relatively high-frequency (i.e., 1 Hz) results, the
performance of PIDC is the worst, and the steady-state force
is only 0.088 N mainly due to its lower bandwidth. It can be
concluded that PIDC cannot track high-speed trajectory. For
SMCC, the error is large and the error caused by friction still
exists. For the high-speed force tracking, the tracking error
of ITSMC increases while the proposed controller remains
the best performance with the similar erms and emax even
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Fig. 6. Force tracking results of different S-curves with different controllers

TABLE II
FORCE TRACKING ERRORS FOR DIFFERENT TRAJECTORIES WITH

DIFFERENT CONTROLLERS

Statistical Errors (N) 0.25 Hz 0.5 Hz 1 Hz

PIDC
erms 0.0063 0.0071 0.0108
emax 0.0181 0.0141 0.0257

SMCC
erms 0.0059 0.0053 0.0089
emax 0.0197 0.0199 0.0279

ITSMC
erms 0.0027 0.0027 0.0034
emax 0.0066 0.0071 0.0083

BCITSMC
erms 0.0016 0.0016 0.0017
emax 0.0052 0.0045 0.0057

at 1 Hz force tracking.
In summary, the employment of integral terminal sliding

surface helps the system to obtain good tracking performance
and the integration of backstepping technology further im-
proves the performance effectively.

C. Results under Different Contact Environment

In the real application, the soft environment can be vary-
ing, for example, the human tissues are not identical from
one to another. To evaluate the robustness of the proposed
control scheme, the soft membranes with different layers are
used in the experiments to simulate different soft contact
environment. The reference is set as 0.5 Hz periodic S-curves
with the amplitude of 0.1 N in the experiments.

Table III shows the force tracking errors when the soft
membranes are with different layers (one-layer, two-layer
and three-layer). As can be seen, although both errors
increase as the number of layers increases, the amount of
increase is very small Therefore, the above results show that
the proposed control scheme is robust which is able to track
the desired force under different soft environment precisely.

D. Results in Medical Application

To validate the effectiveness of the proposed control
scheme in practical application, an experiment of a robot-

TABLE III
FORCE TRACKING ERRORS UNDER DIFFERENT SOFT ENVIRONMENT

Statistical Errors (N) Layer 1 Layer 2 Layer 3

BCITSMC
erms 0.0016 0.0020 0.0023
emax 0.0045 0.0055 0.0058
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Fig. 7. Results of ear surgical operation



assisted ear surgical operation is conducted. In this exper-
iment, the USM-actuated end-effector will carry out the
automatic tube insertion on the soft film. Significantly, the
first step is to contact the film gently and precisely, where
a correct contact force can ensure the high success rate
of the insertion. Fig. 7 shows the experimental results of
this medical application. As can be seen, the contact force
between the soft film and the tube is controlled precisely,
which helps the end-effector insert the tube successfully on
the thin and soft film.

VI. CONCLUSIONS

In this paper, BCITSMC, a novel robust impedance control
scheme leveraging on backstepping technology and SMC
was proposed and developed for an USM-actuated end-
effector to achieve high precision force tracking in a soft
environment. The HC nonlinear model was employed to
investigate the impedance parameters on the steady-state per-
formance during soft interaction. Furthermore, to facilitate
the controller design, an auxiliary variable defined based on
impedance error was constructed. The fast-convergence and
accurate tracking performance of the desired reference were
guaranteed by an integral-type terminal sliding manifold with
the impedance error-based auxiliary variable. The robustness
to the unknown disturbance was achieved by the integral
backstepping approach and an adaptive law was designed
to estimate the upper bound of the total disturbance. The
overall control scheme was deduced by the Lyapunov theory
with stability analysis. Finally, several experiments have been
conducted which results showed that the proposed control
scheme could achieve good force tracking performance as
well as strong robustness in a soft environment.
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